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Fundamentals of Efficient Factor Investing
(corrected May 2017)

Roger Clarke, Harindra de Silva, CFA, and Steven Thorley, CFA

Combining long-only-constrained factor subportfolios is generally not a mean–variance-efficient way to capture 
expected factor returns. For example, a combination of four fully invested factor subportfolios—low beta, small 
size, value, and momentum—captures less than half (e.g., 40%) of the potential improvement over the market 
portfolio’s Sharpe ratio. In contrast, a long-only portfolio of individual securities, using the same risk model and 
return forecasts, captures most (e.g., 80%) of the potential improvement. We adapt traditional portfolio theory 
to more recently popularized factor-based investing and simulate optimal combinations of factor and security 
portfolios, using the largest 1,000 common stocks in the US equity market from 1968 to 2015. 

Equity investors increasingly view their port-
folios as not only a collection of securities but 
also a bundle of exposures to the factors that 

drive security returns. The recent growth in factor-
based strategies under a variety of names indicates 
that many investors now view managing factor 
exposures on a par with traditional asset allocation. 
For example, Kahn and Lemmon (2016) suggested 
that factor-based investing strategies often labeled 
“smart beta” represent a disruptive innovation in the 
asset management industry. In the equity market, 
investors focus on such well-known factors as size, 
value, and momentum, although the factor frame-
work can also be applied to other asset classes. One 
unifying theme is that factor-replicating subportfo-
lios may allow investors to effectively manage factor 
risk and return trade-offs without having to trade 
directly in individual securities.

The central finding of our study is that portfolios 
built directly from individual securities capture most 
of the potential gain from exploiting a small set of 
factors, whereas combinations of specialized factor 
portfolios capture only a fraction of that potential. 
The increase in mean–variance efficiency comes from 
the wider latitude in portfolio construction afforded 
by the cross-sectional variation of the security expo-
sures to the factors. Other important concepts are that 
secondary exposures in factor subportfolios do not 
impose a material reduction on the expected Sharpe 
ratio (Sharpe 1964)—if measured and incorporated 
into the final portfolio weights—as well as the rela-
tively minor impact of security-specific or idiosyn-
cratic risk.

Consider the capitalization-weighted market 
portfolio and four other portfolios that tilt toward 
low-beta, small-size, value, and momentum stocks. 
Figure 1 plots the location of the market and fac-
tor subportfolios in terms of their expected returns 
and risks, given the factor exposures of the largest 
1,000 stocks in the US equity market in 2016. Point 
S is the Sharpe ratio–optimal portfolio of long-
only positions in individual stocks and lies on a 
long-only-constrained efficient frontier of other 
optimal security portfolios. Point F is the Sharpe 
ratio–optimal long-only combination of the four 
factor subportfolios and lies on an efficient frontier 
of other optimal subportfolio combinations.

The efficient frontier of factor subportfolio com-
binations in Figure 1 stretches from a large weight 
on the low-beta portfolio through portfolio F to a 
large weight on the value portfolio. The locations 
of the subportfolios and associated efficient frontier 
curves in Figure 1 are specific to (1) a given set of 
investor expectations, (2) the factor exposure correla-
tion structure built into the 2016 US equity market, 

Roger Clarke is chairman of Analytic Investors, Los Ange-
les. Harindra de Silva, CFA, is president of Analytic Inves-
tors, Los Angeles. Steven Thorley, CFA, is the H. Taylor 
Peery Professor of Finance at the Marriott School of Man-
agement, Brigham Young University, Provo, Utah. 

Editor’s note: This article was reviewed and accepted 
by Executive Editor Stephen J. Brown.

Editor’s note: Steven Thorley, CFA, became co-editor 
of the Financial Analysts Journal after the article was 
submitted but before it was accepted for publication. 
He was recused from the peer review and acceptance 
processes. All the necessary measures were taken to 
prevent Dr. Thorley from accessing any information 
related to the submission, including the identity of the 
reviewers. The reviewers were also unaware of his and 
his co-authors’ identities. For information about the 
current conflict-of-interest policies, see www.cfapubs.
org/page/faj/policies.



Financial Analysts Journal

10 www.cfapubs.org © 2016 CFA Institute. All rights reserved.

and (3) the impact of secondary (i.e., unintended) 
exposures in the subportfolios. As explained later in 
the article, the impact of these secondary exposures 
makes the location of the factor portfolios in Figure 
1 different from what the expected return and risk 
of each factor alone would dictate.

One important concept behind Figure 1 is that 
the optimal subportfolio combinations would include 
a short position in the market portfolio if not for the 
long-only constraint. Each of the subportfolios already 
has ample market-factor exposure, and “squeezing 
in” enough simultaneous exposure to the nonmar-
ket factors to make a material difference in the risk-
adjusted return requires a large hedge on the market 
portfolio. In fact, the number of nonmarket factors 
and the factor information ratio magnitudes needed 
to motivate active versus passive investing increase the 
size of that market hedge. The higher dotted line in 
Figure 1 shows the potential Sharpe ratio if the market 
hedge could be deployed, and the lower dotted line 
shows the expected Sharpe ratio of the market port-
folio. In contrast, the long-only optimal portfolio S of 
individual securities lies on an efficient frontier that 
comes close to the maximum factor potential without 
having to short the market portfolio or any securities.

In our study, we used the mathematics of multi-
factor portfolio theory that originated with Treynor 
and Black (1973)—extended to accommodate cor-
related factor returns and secondary factor expo-
sures—to compare the mean–variance efficiency of 

security versus factor portfolio combinations. Using 
a set of well-known factors in the US equity market 
over 1968–2015, we measured the magnitude of the 
loss in efficiency from combining factor subport-
folios. We did not address the set of factors that 
best explains the covariance structure of individual 
stocks or that offers the best prediction of long-term 
returns. We were agnostic about what led these par-
ticular factors to be identified in the historical return 
data—whether rational returns to systematic risk, 
behavior- or friction-induced market anomalies, or 
simply extensive data mining. We assumed only that 
investors selected some small set of equity market 
factors as the primary driver of returns in well-
diversified portfolios.

Our results have parallels to Kritzman and Page 
(2003), who showed that portfolios constructed from 
individual securities present a greater opportunity 
set for skilled investors than choosing among asset 
classes, economies, or sectors. This article, however, 
is not about the potential of investor skill to select 
among alternative securities or asset classes. The 
underlying drivers of returns are the same, whether 
the final portfolio is formed from individual securi-
ties or subportfolios. Our focus here is the mean–
variance efficiency of long-only portfolios formed 
from individual securities versus portfolios formed 
from factor subportfolios.

Econometric advances such as those of 
Ledoit and Wolf (2003) and Fan, Fan, and Lv 

Figure 1.   Optimal Security and Factor Portfolios
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(2008)—together with commercially available factor 
risk models by Barra and Axioma, among others—
have made the application of the portfolio theory 
of Markowitz (1952) a practical reality for many 
investors. Solutions to such large-scale portfolio 
construction issues as the “curse of dimensionality” 
and “error optimization” have also been provided 
over time, with frameworks for quantitative active 
portfolio management established by Grinold (1989) 
and Black and Litterman (1992).

Although such implementation issues as turn-
over, transaction costs, and managerial fees are 
important considerations in designing investment 
products and services, this article focuses on poten-
tially more material issues associated with multiple 
levels of portfolio optimization and secondary factor 
exposures under the long-only constraint. In this 
article, we illustrate several alternative methodolo-
gies for weighting securities in factor subportfolios, 
but we do not specify the “best” way to construct 
such portfolios. Capitalization weighting, single-
factor optimization, and heuristic sorting on factor 
exposure all produce final portfolios with lower 
Sharpe ratios than security-based portfolios.

Readers who are primarily interested in the 
long-term (1968–2015) backtests can skip directly 
to the final section, but the theory sections that come 
first help explain why multifactor portfolios built 
directly from individual securities maintain such a 
significant advantage.

Multifactor Portfolio Theory
Our notation for the well-known linear factor model 
of the return on the ith (out of N) risky assets is

r R Ri i i i K K i= + + + +α β β ε, ,... ,1 1  (1)

where Rj  is the realized return on the jth (out of K) fac-
tors, βi j,  is the “exposure” of asset i to factor j, and εi  is 
asset i’s idiosyncratic return. In subsequent equations, 
we use the bolded notation B  for the N-by-K matrix of 
factor exposures βi j,  and ignore both security-specific 
expected returns, αi , and the source of security-specific 
idiosyncratic risk, εi , to focus on the returns and risks 
of factor exposures. An important new result derived 
in Appendix A is that the N-by-1 vector of security 
weights that maximize the unconstrained factor Sharpe 
ratio of security portfolio S is

w B B B V US
S

S
=








 ′( )− −σ

SR
1 1 ,  (2)

where V  is the K-by-K factor return covariance 
matrix and U  is the K-by-1 vector of forecasted fac-
tor returns.

The scalar multiplier at the beginning of 
Equation 2 is simply the risk of the optimal portfolio, 

σS ,  divided by the optimal portfolio’s Sharpe ratio, 
SRS . The terms at the end of Equation 2 capture 
investor expectations of factor risks, V , and factor 
returns, U , similar to other mean–variance-optimal 
solutions. The innovative part of Equation 2 is the 
middle term, which includes the factor exposure 
matrix B  and the inverse factor exposure correlation 

matrix ′( )−B B 1 .  Applying Equation 2 with factor 
subportfolios as the underlying assets rather than 
individual securities gives the K-by-1 vector of opti-
mal subportfolio weights as

w B B B V UF
F

F
F F F=









 ′( )− −σ

SR

1 1 ,  (3)

where BF  is the K-by-K matrix of subportfolio factor 
exposures.

Because the weights in Equations 2 and 3 are 
unconstrained (i.e., may be positive or negative but 
sum to 100%), portfolios S and F both achieve the 
maximum possible factor Sharpe ratio, defined as 
the expected factor-driven return divided by factor-
driven risk (i.e., without consideration of idiosyn-
cratic risk). As shown in Appendix A for generic 
portfolio P, when these unconstrained weights are 
used, the optimal portfolio’s factor Sharpe ratio 
squared is

SRP
2 1= ′ −R R ,  (4)

where R is a K-by-1 vector composed of the market 
Sharpe ratio and the nonmarket factor information 
ratios, and П is the K-by-K factor return correlation 
matrix. If the factor returns are uncorrelated 
(i.e.,   − = =1 ), Equation 4 collapses to a property 
first identified by Treynor and Black (1973).1 The 
Treynor–Black rule is that the maximum possible 
unconstrained (i.e., long–short portfolio) Sharpe 
ratio squared is equal to the market portfolio Sharpe 
ratio squared plus the sum of the squared informa-
tion ratios of the other K – 1 factors:

SR SR IRP M j
j

K2 2 2

2
= + ∑

=
.  (5)

Although we use information ratios to param-
eterize investor views on factor risks and returns, we 
do not use the portfolio’s overall information ratio 
as the primary performance statistic. Characterizing 
portfolio performance by a single information ratio 
implicitly assumes that the market and purely active 
portfolios can be separated, whereas limits on short-
ing the market are in fact critical to the differences 
in mean–variance efficiency of the security versus 
subportfolio combinations that we studied. In addi-
tion, a portfolio’s information ratio, as opposed to 
its Sharpe ratio, does not account for the optimal 
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amount of active risk. As shown in Appendix A, 
the optimal amount of active risk declines with the 
portfolio’s unconstrained information ratio, as well 
as the Clarke, de Silva, and Thorley (2002) trans-
fer coefficient, owing to the reduced potential for 
active management to add value. Thus, our primary 
numerical expression of a portfolio’s mean–variance 
efficiency is the percentage of potential Sharpe ratio 
capture, SR SR SR SR−( ) −( )M P M/ , where SR  is the 
Sharpe ratio of the portfolio being measured, SRP  is 
the unconstrained optimal Sharpe ratio, and SRM is 
the Sharpe ratio of the market portfolio.

Factor Return Parameters. Table 1 reports sta-
tistics on the set of factor returns in the US equity 
market over 1968–2015 that motivated our choice 
of parameter values in the previous illustration, as 
well as the numerical examples in this section. These 
well-known factors were identified over time by, 
among others, Jegadeesh and Titman (1993); Fama 
and French (1996); Carhart (1997); Chan, Karceski, 
and Lakonishok (1998); Clarke, de Silva, and Thorley 
(2010); and Frazzini and Pedersen (2014). As shown 
in Table 1, the average return in excess of the risk-free 
rate for the cap-weighted market portfolio (largest 
1,000 US common stocks) was 5.73%, with a risk of 
15.56%. The incremental (i.e., in excess of market) 
return and risks for the four other factors produce 
information ratios that range from 0.180 for the 
small-size factor to 0.634 for the momentum factor.

We estimated the factor returns in Table 1 using 
monthly cap-weighted multivariate regressions on 
the cross section of security returns, as explained in 
Clarke, de Silva, and Thorley (2014).2 One implication 
of the multivariate regression framework is that the 
realized factor returns in Table 1 are less correlated 
with each other, in contrast to factor returns based on 
univariate or bivariate sorts (e.g., the Fama–French 
factors HML, or high minus low, and UMD, or up 

minus down). The notable exception to the general 
pattern of small-magnitude correlations is the –0.644 
correlation of the low-beta factor return with the mar-
ket return. Because of this large negative correlation, 
the risk-adjusted information ratio provides a better 
perspective on that factor’s potential than the simple 
quotient of active return to active risk. Adjusting for 
the realized market beta, the “alpha” of the low-beta 
factor is 2.73%, with active risk of 4.96%, giving a risk-
adjusted information ratio of 2.73/4.96 = 0.551 (shown 
at the bottom of Table 1). 

In the next sections, we emphasize several 
important concepts based on the optimal portfolio 
weights specified in Equations 2 and 3. First, the gen-
eralized Treynor–Black result in Equation 4 is achiev-
able only if the security weights are unconstrained, 
meaning that short positions in individual securities 
are allowed in portfolio S and shorting subportfolios 
is allowed in portfolio F. Using the simple case of one 
factor in addition to the market, we show that the 
reduction in the long-only portfolio F factor Sharpe 
ratio increases with the factor’s information ratio 
and decreases with its active risk.

Second, using a more involved case of the market 
and two additional factors, we show how secondary 
factor exposures in matrix BF contribute to the con-
struction of portfolio F. Appendix A specifies the design 
of pure factor-replicating subportfolios, with zero expo-
sure to all but one nonmarket factor, but such portfolios 
require multivariate optimization and short selling 
that may be costly to implement in practice. Third, 
the reduction in the factor Sharpe ratio of portfolio F 
becomes larger as more factors are used—although less 
so with positively correlated factor exposures and more 
so with negatively correlated exposures.

The Market Plus One Factor. Consider the 
simple case of optimally combining two portfolios: 
the market portfolio M and one other fully invested 

Table 1.   Annualized Factor Returns, 1968–2015

Market Low Beta Small Value Momentum
Average 5.73% 1.19% 0.67% 0.92% 3.89%
Standard deviation 15.56% 6.48% 2.67% 4.16% 6.14%
Average/Standard deviation 0.368 0.184 0.250 0.222 0.634

Correlation with
Market 1.000 –0.644 0.199 –0.082 –0.026
Low beta –0.644 1.000 –0.159 0.109 0.071
Small 0.199 –0.159 1.000 –0.152 0.064
Value –0.082 0.109 –0.152 1.000 –0.153
Momentum –0.026 0.071 0.064 –0.153 1.000

Market beta 1.000 –0.268 0.034 –0.022 –0.010
Market alpha 0.00% 2.73% 0.47% 1.05% 3.95%
Active risk 0.00% 4.96% 2.62% 4.15% 6.14%
Information ratio 0.000 0.551 0.180 0.252 0.643
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portfolio with unit exposure to some factor A with 
a return that is uncorrelated with the market. The 
Treynor–Black result (Equation 5) for the maximum 
possible factor Sharpe ratio in this case is

SR SR IRF M A
2 2 2= + ,  (6)

where the required weights for the market port-
folio and the factor A portfolio are given by 

Equation 3. Specifically, BF =
1 0 0 0
1 0 1 0

. .

. .
 

 such that 

B B BF F F′( ) =
−−1 1 0 1 0

0 0 1 0
. .
. .

, the assumption of uncor-

related factor returns gives V U− =1 SR
IR

M M

A A

/
/
σ
σ

, and 

the budget constraint gives SR SRF F M M/ / .σ σ=  
With these substitutions in Equation 3, the required 
weight for subportfolio A is

wA M A

M A
=
σ

σ
IR

SR
,  (7)

and the required weight for the market portfolio is 
w wM A= −1 .  Note that although the investor’s view 
about factor A is parameterized by that factor’s infor-
mation ratio and active risk, the weight specified in 
Equation 7 applies to a fully invested portfolio (i.e., 
the constituent security weights may be positive or 
negative but sum to 100%). In other words, with the 
additional exposure to the market factor, the total 
expected return on subportfolio A is µ µM A+  and 
the total factor risk of subportfolio A is ( ) ./σ σM A

2 2 1 2+
Suppose that the parameters for the market fac-

tor are µM = 6%  and σM =15%  (SRM = 6.0/15.0 
= 0.400) and that the parameters for factor A are 
µA = 0 9. %  and σA = 3 0. %  ( IR A = =0 9 3 0 0 300. / . . ). 
For these numerical values, the maximum possible 
Sharpe ratio in Equation 6 is (0.4002 + 0.3002)1/2 
= 0.500. To obtain that Sharpe ratio, however, the 
weight for subportfolio A in Equation 7 must be 
wA = ( ) ( ) =× ×15 0 0 300 0 400 3 0 375. . / . . %, meaning 
that a large short position of –275% in the market 
portfolio is required for the combined portfolio to 
have weights that sum to 100%. With those weights, 
the combined portfolio has an expected return of 
3.75(6.9) – 2.75(6.0) = 9.4% and a factor risk of 18.8%, 
yielding the specified Sharpe ratio of 9.4/18.8 = 0.500. 
Without the ability to short the market portfolio, the 
next-best Sharpe ratio in this simple case is achieved 
with a 100% investment in subportfolio A, which has 
an expected return of 6.0 + 0.9 = 6.9% and a risk of 
(15.02 + 3.02)1/2 = 15.3%. Thus, the Sharpe ratio of 
the long-only-constrained optimal solution is only 
6.9/15.3 = 0.451, about halfway between the passive 
market Sharpe ratio of 0.400 and the maximum pos-
sible Sharpe ratio of 0.500.

Figure 2 plots the unconstrained and long-only-
constrained Sharpe ratios for a range of factor informa-
tion ratios and three levels of active risk. For instance, 
the assumed numerical values in the previous exam-
ple plot on the “Long-Only 3% Active Risk” curve at a 
factor information ratio of 0.300. Moving from left to 
right in Figure 2, the Treynor–Black promise of value 
added from using a nonmarket factor embedded in 
a fully invested portfolio requires a short position 
in the market portfolio that increases with the infor-
mation ratio. The larger required short positions in 
the market portfolio lead to larger reductions in the 
long-only Sharpe ratio, as shown by the gap between 
the unconstrained and long-only-constrained lines.

As specified in Equation 7, lower values for factor 
risk,σA , holding the information ratio constant, also 
lead to a larger reduction in the long-only portfolio F 
Sharpe ratio. The intuition is that a factor with lower 
risk requires a larger position in the factor portfolio to 
adequately affect the Sharpe ratio—and thus a larger 
short position in the market portfolio to meet the fully 
invested budget constraint. For lower values of the 
single nonmarket factor information ratio, however, 
the constrained lines in Figure 2 do not gap below the 
unconstrained optimal solution, meaning that the fac-
tor A portfolio weight is less than 100% and shorting 
the market portfolio is not required.

Before moving on to the case of the market plus 
two factors, note that the factor return in the case 
of the single nonmarket factor could be correlated 
ex ante with the market return, which would make 
the math in Equations 6 and 7 more involved. Most 
factor portfolios that have been examined in prac-
tice—for example, SMB (small minus big) for the 
small-cap factor (Fama and French 1996) and HML 
(high minus low book-to-market ratio) for the value 
factor—are designed to be approximately uncorre-
lated with the market return. In contrast, the more 
recently introduced “beta” factors—for example, VMS 
(volatile minus stable) in Clarke, de Silva, and Thorley 
(2010) and BAB (betting against beta) in Frazzini and 
Pedersen (2014)—are by design highly correlated with 
the market. Using the generalized Treynor–Black 
result in Equation 4, with a nonzero correlation of 
ρMA  between the market and factor A returns, we 
see that the optimal possible Sharpe ratio is

SR
SR IR

IRF
M MA A

MA
A

2
2

2
2

1
=

−( )
−

+
ρ

ρ
 (8)

instead of Equation 6, and the required weight for 
subportfolio A is

wA
M A MA M

M MA A A
=

−( )
−( )

σ ρ

ρ σ

IR SR
SR IR  (9)

instead of Equation 7.
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Suppose that A is the low-beta factor with an 
expected return of µA = 0 0. %,  risk of σA =10 0. %,  
and a market correlation of ρMA = −0 500. .  Even 
though the simple information ratio for this fac-
tor is 0.0/10.0 = 0, the maximum possible Sharpe 
ratio in Equation 8 is 0.400/(1 – 0.5002)1/2 = 0.462, 
a material improvement over the market Sharpe 
ratio of 0.400. In other words, although factor A 
has an expected return of zero, optimal deployment 
allows for a hedge on market risk without lowering 
the expected return. To construct that hedge, the 
optimal weight for subportfolio A in Equation 9 
is wA = 0.15(0.000 + 0.500 × 0.400) / [(0.400 – 0.000) 
× 0.10] = 75%. In fact, for the parameter values in 
this illustration, the expected incremental return of 
factor A would have to be –2.0% for wA  to be zero 
in Equation 9, consistent with the prediction of the 
traditional CAPM.

The Market Plus Two Factors. Now consider 
the case of the market factor plus two additional 
factors, A and B. First, assume that factors A and B 
are represented by pure factor-replicating portfo-
lios, meaning that subportfolio A has no exposure 
to factor B and subportfolio B has no exposure to 
factor A. In addition, both subportfolios are fully 
invested, with market factor exposures of exactly 
1. Specifically, assume that the subportfolio factor 
exposures used in Equation 3 are

BF =
1 0 0 0 0 0
1 0 1 0 0 0
1 0 0 0 1 0

. . .

. . .

. . .
.  (10)

The nondiagonal elements of 0.0 in the first row 
of Equation 10 indicate that the market portfolio has 
no positive or negative incremental exposure to the 
nonmarket factors. Alternatively, the nondiagonal 
elements of 1.0 in the first column of Equation 10 
indicate that the factor subportfolios have full mar-
ket factor exposure.

If the returns to factors A and B are uncorrelated 
with each other and are uncorrelated with the market 
factor, the maximum possible Sharpe ratio (accord-
ing to the Treynor–Black result) is

SR SR IR IRF M A B
2 2 2 2= + + .  (11)

The weight for subportfolio A required to 
achieve the result in Equation 11 is still given by 
Equation 7, with a similar form for subportfolio B’s 
weight. Suppose that the market parameters are 
µM = 6%  and σM =15 0. %  ( SRM = =6 0 15 0 0 400. / . . ) 
but that the parameters for factor A are more modest 
at µA =1 0. %  and σA = 5 0. %  (IRA = 1.0/5.0 = 0.200). 
Given the same values for factor B, the maximum 
possible Sharpe ratio in Equation 11 is (0.4002 + 
0.2002 + 0.2002)1/2 = 0.490. To obtain that Sharpe 
ratio, however, the weight for subportfolio A must be 

Figure 2.   Optimal Factor Sharpe Ratio with One Nonmarket Factor
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wA = ×( ) ×( ) =15 0 020 0 40 5 0 150. / . . %,  with the same 
weight for subportfolio B, requiring a short posi-
tion in the market portfolio of –200%. Alternatively, 
the long-only-constrained optimal solution is 50% 
weights for subportfolios A and B, resulting in a 
Sharpe ratio of 0.454—again, about halfway between 
the unconstrained optimal Sharpe ratio of 0.490 and 
the market benchmark Sharpe ratio of 0.400.

The market-plus-two-factor case allows for an 
examination of the impact of correlated nonmar-
ket factor returns as well as the impact of nonzero 
secondary factor exposures. First, suppose that the 
factor subportfolios are pure, without secondary 
factor exposures, but the factor returns are thought 
to have some nonzero correlation value ρAB .  The 
generalized Treynor–Black result in Equation 5 gives 
the maximum possible Sharpe ratio as
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(rather than Equation 11) and the required weight 
for subportfolio A as
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(rather than Equation 7), with a similar form for 
subportfolio B’s optimal weight.

For example, if ρAB = 0 200. ,  the maximum pos-
sible factor Sharpe ratio in Equation 12 is SRF = 0 476. .  
The potential Sharpe ratio is lower than the simple 
Treynor–Black value of 0.490 because the factors are 
not independent. The required weights for subport-
folios A and B in Equation 13 are 125% each, lower 
than the 150% in the uncorrelated case, so the long-
only constraint is not as binding. But if the factor 
returns are thought to be negatively correlated—
say, ρAB = −0 200. —the maximum possible Sharpe 
ratio in Equation 12 is 0.510, the required weights 
for subportfolios A and B in Equation 13 are 187.5% 
each, and the long-only constraint is more binding.

Now assume that factor portfolio B has a second-
ary exposure to factor A of 0.2 instead of 0.0 but the 
factor returns are uncorrelated. In other words, the 
matrix of subportfolio factor exposures is

BQ =
1 0 0 0 0 0
1 0 1 0 0 0
1 0 0 2 1 0

. . .

. . .

. . .
 (14)

instead of Equation 10. Although the maximum pos-
sible Sharpe ratio—given uncorrelated returns—still 
conforms to the Treynor–Black result of 0.490, the 
weights required to obtain that Sharpe ratio must 
account for BBA, the ancillary exposure of subport-
folio B to factor A:
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The optimal weight formula in Equation 15 is 
more involved than Equation 7 to adjust for the fact 
that subportfolio B provides some of the desired 
exposure to factor A. The required weight for sub-
portfolio B is still wB =150%,  but the required 
weight for subportfolio A is now only wA =120%,  
so the required short position in the market portfolio 
is –170% instead of –200%. As a result, the imposition 
of a long-only constraint is less binding than when 
the factor portfolios are pure.

Alternatively, suppose that subportfolio B has a 
negative exposure to factor A of –0.2, so the matrix 
of subportfolio factor exposures is

BF =
−

1 0 0 0 0 0
1 0 1 0 0 0
1 0 0 2 1 0

. . .

. . .

. . .
.  (16)

With the values shown in Equation 16, the neg-
ative exposure of subportfolio A to factor B must 
now be offset by the weight for subportfolio B. The 
required weight in Equation 15 is wA =180%,  so the 
required weight for the market portfolio is –230% 
instead of –200%. In other words, the imposition of 
a long-only constraint is more binding than when 
the factor portfolios are pure.

In summary, our analysis of the market-plus-
one-factor and market-plus-two-factor cases shows 
that the reduction in the expected Sharpe ratio of 
portfolio F (i.e., a long-only combination of factor 
subportfolios) increases with

1. the number of nonmarket factors,
2. the magnitude of factor information ratios,
3. lower levels of nonmarket factor risk,
4. negative correlations between nonmarket factor 

returns, and
5. negative correlations between nonmarket factor 

exposures.
As more nonmarket factors are considered, 

reductions in the potential factor Sharpe ratio of port-
folio F become a complex function of the assumed 
correlations between factor returns, as well as any 
secondary exposures within the factor subportfolios. 
Alternatively, as we show in the next section, the 
optimal long-only security portfolio S still captures 
most of the potential factor Sharpe ratio by assigning 
larger weights to securities that simultaneously have 
high exposures to multiple factors.

Ex Ante Empirical Results for 2016
Here we illustrate the portfolio theory developed in 
Appendix A and reviewed in the last section, with 
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data from the CRSP and Compustat at the beginning of 
calendar year 2016. In our study, we constructed both 
unconstrained and long-only-constrained portfolios, 
using individual securities and factor subportfolios, 
and examined the reduction in factor Sharpe ratios 
caused by long-only constraints. Specifically, we used 
the market-cap weights of the largest 1,000 stocks as 
well as data on four stock characteristics: 60-month 
market beta, negative log market capitalization, book-
to-market ratio, and 11-month price momentum.

Table 2 provides summary statistics on the values 
that populate the last four columns of the 1,000-by-5 
factor exposure matrix B in Equation 2. Note that the 
first column of matrix B (not reported in Table 2) is 
populated by all 1s because all securities have unitary 
exposure to the market factor. The nonmarket factor 
exposures are adjusted to have cap-weighted aver-
ages of 0.000 (first row of Table 2) and are standard-
ized to have cross-sectional variances of 1.000 (third 
row of Table 2). For example, the equally weighted 
mean of 1.656 for the small-cap factor (second row 
of Table 2) is due to the highly skewed nature of that 
factor’s exposures. The lower half of Table 2 reports 
the correlations of the factor exposures across the 
1,000 stocks. At the beginning of 2016, high-value 
securities tended to have low momentum exposure, 
as shown by the relatively large negative correlation 
of –0.313. Similarly, low-beta securities tended to be 
larger stocks, as shown by the negative correlation of 
–0.173 with the small factor.

Although the factor exposures summarized in 
Table 2 are dictated by the set of securities available 
to investors in 2016, different investors will have 

different views on the expected factor returns, risks, 
and correlations. Table 3 reports an investor’s view 
of the factor returns and risks at the beginning of 
calendar year 2016. Specifically, the return on the 
market in excess of the risk-free rate is expected to 
be 6.00%, with a risk of 15.00% and a Sharpe ratio 
of 0.400. The four other factors have expected active 
returns (in excess of the market) and active risks that 
yield information ratios of 0.300 for the small and 
value factors and 0.200 for the momentum factor.

The small and value factors have the same infor-
mation ratio, but the active return of the small fac-
tor is half the magnitude of that of the value factor. 
The expected active return on the low-beta factor 
is zero, but the low-beta factor is assumed to have 
a negative correlation of –0.500 with the market, 
providing potential for that factor to hedge market 
exposure. Given the set of investor expectations in 
Table 3, the maximum possible factor Sharpe ratio 
for an actively managed portfolio, calculated directly 
from Equation 4, is
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compared with a Sharpe ratio of 0.400 for the market 
portfolio.

Before examining the more common practice of 
combining factor subportfolios that have secondary 
exposures, we consider the simpler case of using 
“pure” factor portfolios. As specified in Appendix A, 
pure factor portfolios generally require some short-
ing of individual securities, as shown in the last row 

Table 3.   Investor Views on Expected Factor Returns

Active Return Active Risk Information Ratio
Low beta 0.00% 5.00% 0.000
Small 0.75 2.50 0.300
Value 1.50 5.00 0.300
Momentum 1.00 5.00 0.200

Notes: Market excess return = 6.00%, risk = 15.00%, and Sharpe ratio = 0.400. Factor returns are 
assumed to be uncorrelated, except that the low-beta factor has a negative correlation of –0.500 
with the market.

Table 2.   Statistics on Nonmarket Factor Exposures

Low Beta Small Value Momentum
Cap-weighted average 0.000 0.000 0.000 0.000
Equal-weighted average –0.279 1.656 0.093 –0.104
Standard deviation 1.000 1.000 1.000 1.000

Exposure correlations
Low beta 1.000 –0.173 –0.131 0.102
Small –0.173 1.000 0.083 –0.028
Value –0.131 0.083 1.000 –0.313
Momentum 0.102 –0.028 –0.313 1.000
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of Table 4. But the exposure to the factor of interest in 
these portfolios is exactly 1.000 and the exposure to 
all other nonmarket factors is exactly 0.000, as shown 
in Table 4. The unconstrained optimal weights for 
the pure subportfolios in the combined portfolio F 
(calculated from Equation 3) match the exposure 
of portfolio F to each factor. For example, the opti-
mal weight for the value subportfolio is 168.8%, as 
reported near the bottom of Table 4, and the exposure 
of portfolio F to the value factor is 1.688 (last column 
of Table 4). The positive weights assigned to the four 
nonmarket factors lead to a large negative weight 
for the market portfolio but provide the expected 
portfolio return and factor risk that yield the 0.658 
ex ante Sharpe ratio predicted by the generalized 
Treynor–Black result (last column of Table 4).

Although pure factor subportfolios have the 
advantage of avoiding secondary factor exposures, 
they require shorting and so are more difficult to 
implement in practice. One natural alternative is to 
maximize the subportfolio’s Sharpe ratio for the fac-
tor of interest under the long-only constraint, as in 
the previous illustration and as shown in Panel A of 
Table 5. The maximum Sharpe ratio subportfolios in 
Panel A have the large intended exposures to the pri-
mary factor (bolded numbers), but with secondary 
factor exposures that are also material. The largest 
secondary exposures are to the small factor in each 
of the three other nonmarket factor portfolios. The 
low-beta subportfolio has a small-factor exposure 
of 1.450, the value subportfolio has a small-factor 
exposure of 1.810, and the momentum portfolio has 
a small-factor exposure of 1.799. With a Sharpe ratio 
of 0.531, the combined portfolio F in Panel A cap-
tures only (0.531 – 0.400)/(0.658 – 0.400) = 51% of the 
unconstrained potential Sharpe ratio improvement.

One result of the large exposures to the small 
factor (which is assumed to have a positive infor-
mation ratio) is that the subportfolios in Panel A of 
Table 5 have higher expected returns and risks than 
the primary factor of interest alone would warrant. 
To illustrate, Figure 3 shows the same portfolios as 
Figure 1 but includes the positions of the pure factor 
portfolios from Table 4 as well as the factor portfolios 
in Panel A of Table 5. Another result is that the small 
subportfolio itself does not come into the long-only 
solution for portfolio F (see the weight of zero for the 
small subportfolio in Panel A) because ample small-
factor exposure is already provided by the other 
subportfolios. In fact, in an unconstrained solution, 
portfolio F would short both the small subportfolio 
and the market portfolio to avoid “doubling up” on 
the small factor.

Panel B of Table 5 reports on a third factor sub-
portfolio construction methodology: sorting securi-
ties into factor exposure quintiles and then forming 
equally weighted portfolios from the 200 of 1,000 
stocks in the largest quintile. To allow meaning-
ful capitalization of the small subportfolio, the top 
four quintiles of all investable securities (i.e., 800 of 
1,000) are included for that factor. As shown in Table 
5, this subportfolio construction methodology also 
leads to large small-factor exposures in the other 
factor subportfolios—and thus no direct exposure 
to the small subportfolio. The large weighting on 
the small factor in other factor portfolios may be one 
of the reasons Blitz (2015) found attractive empirical 
results for equal-weighted security positions. With 
a Sharpe ratio of 0.519, the combined portfolio F 
in Panel B captures (0.519 – 0.400)/(0.658 – 0.400) 
= 46% of the unconstrained potential Sharpe ratio 
improvement.

Table 4.   Pure (Long–Short) Factor Portfolios

Market Low Beta Small Value Momentum
Long–Short 
Optimal “F”

Return 6.00% 6.00% 6.75% 7.50% 7.00% 12.19%
Risk 15.00% 13.23% 15.21% 15.81% 15.81% 18.52%
Sharpe ratio 0.400 0.435 0.444 0.474 0.443 0.658

Factor exposures
Market 1.000 1.000 1.000 1.000 1.000 1.000
Low beta 0.000 1.000 0.000 0.000 0.000 1.500
Small 0.000 0.000 1.000 0.000 0.000 3.375
Value 0.000 0.000 0.000 1.000 0.000 1.688
Momentum 0.000 0.000 0.000 0.000 1.000 1.125

Weight in F –668.8% 150.0% 337.5% 168.8% 112.5% 100.0%
N (securities) 1,000 1,000 1,000 1,000 1,000 1,000
Sum of longs 100.0% 114.4% 101.7% 115.8% 115.0% 243.1%
Sum of shorts 0.0% –14.4% –1.7% –15.8% –15.0% –143.1%

Note: Nonmarket portfolio exposures to the primary factor of interest are in boldface.
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Panel C of Table 5 reports on a fourth example 
of factor subportfolio construction methodology: 
cap-weighted quintile sorts. Cap-weighted factor 
portfolios are commonly used in practice because 
of automatic rebalancing and general equity market 
representation. Cap-weighted factor portfolios also 
come closer to pure long–short factor representa-
tions, as shown by the relatively large values for 

the bolded exposures in Panel C of Table 5, and 
generally have low off-diagonal or secondary factor 
exposures. As a result, the long-only-constrained 
combination for portfolio F has positive weights 
for all four factor subportfolios, in contrast to the 
maximum Sharpe ratio portfolios and the equal-
weighted quintile portfolios. But the combined 
portfolio F in Panel C of Table 5 captures only 

Table 5.   Long-Only Factor Subportfolios

Low Beta Small Value Momentum Portfolio F
A. Maximum Sharpe ratio portfolios
Return 6.92% 8.27% 9.06% 8.11% 7.54%
Risk 13.51% 17.66% 20.41% 17.88% 14.21%
Sharpe ratio 0.512 0.468 0.444 0.453 0.531

Factor exposures
Market 1.000 1.000 1.000 1.000 1.000
Low beta 1.373 –0.440 –0.705 –0.228 0.701
Small 1.450 2.740 1.810 1.799 1.578
Value –0.038 0.243 1.802 –0.447 0.255
Momentum –0.107 –0.152 –0.996 1.431 –0.027

Weight in F 63.9% 0.0% 19.6% 16.5% 100.0%

N (securities) 302 260 243 432

Effective N 136.7 185.1 64.8 192.9

B. Equal-weighted quintile portfolios
Return 6.95% 7.62% 8.66% 8.10% 7.48%
Risk 13.67% 16.78% 18.39% 17.39% 14.40%
Sharpe ratio 0.508 0.454 0.471 0.466 0.519

Factor exposures
Market 1.000 1.000 1.000 1.000 1.000
Low beta 1.072 –0.351 –0.492 –0.235 0.564
Small 1.464 2.062 1.794 1.784 1.575
Value –0.097 0.121 1.280 –0.298 0.214
Momentum –0.004 –0.112 –0.600 1.207 –0.026

Weight in F 65.9% 0.0% 24.1% 10.1% 100.0%

N (securities) 200 800 200 200

Effective N 200.0 800.0 200.0 200.0

C. Cap-weighted quintile portfolios
Return 5.51% 7.27% 7.54% 6.58% 6.81%
Risk 13.23% 16.30% 17.83% 16.50% 15.04%
Sharpe ratio 0.416 0.446 0.423 0.399 0.453

Factor exposures
Market 1.000 1.000 1.000 1.000 1.000
Low beta 1.070 –0.271 –0.516 0.008 0.047
Small –0.056 1.699 0.148 0.106 0.716
Value –0.251 0.074 1.287 –0.520 0.222
Momentum –0.076 –0.120 –0.497 1.282 –0.062

Weight in F 26.0% 40.3% 23.9% 9.8% 100.0%

N (securities) 200 800 200 200

Effective N 48.7 547.4 35.1 30.8

Note: Nonmarket portfolio exposures to the primary factor of interest are in boldface.
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(0.453 – 0.400)/(0.658 – 0.400) = 21% of the potential 
Sharpe ratio improvement.

We now turn to the issue of constructing portfolio 
S from individual securities. As with subportfolio con-
struction, there are different methodologies for select-
ing and weighting the securities. Table 6 reports on 
several alternatives, along with the market portfolio in 
the first column. The second column shows the long-
only implementation of Equation 2, selecting from all 
1,000 securities, as seen in the earlier illustration.3 The 
maximum Sharpe ratio portfolio S contains 117 securi-
ties and has substantial exposures to all the nonmar-
ket factors—and, despite being long only, obtains an 

ex ante Sharpe ratio of 0.632, capturing (0.632 – 0.400)/
(0.658 – 0.400) = 90% of the maximum potential. The 
two other security portfolio construction method-
ologies in Table 6 are the equal and capitalization 
weighting of the 200 out of 1,000 securities (i.e., top 
quintile) with the highest weights in Equation 2. Both 
have positive exposures to all the nonmarket factors, 
although not as high as the maximum Sharpe ratio 
security portfolio, and slightly lower ex ante Sharpe 
ratios of 0.583 (71% capture) and 0.590 (74% capture), 
respectively. The final security portfolio in Table 6 uses 
the long–short weights specified in Equation 2 and 
thus achieves the maximum potential Sharpe ratio of 

Table 6.   Security Portfolios in 2016

Market Maximum Sharpe
Top Quintile Equal 

Weight 
Top Quintile Cap 

Weight 
Long–Short 

Optimal
Return 6.00% 9.81% 9.02% 9.14% 12.19%
Risk 15.00% 15.52% 15.48% 15.48% 18.51%
Sharpe ratio 0.400 0.632 0.583 0.590 0.658

Factor exposures
Market 1.000 1.000 1.000 1.000 1.000
Low beta 0.000 1.014 0.494 0.554 1.500
Small 0.000 2.261 2.271 2.302 3.375
Value 0.000 0.972 0.614 0.637 1.688
Momentum 0.000 0.653 0.394 0.456 1.125

N (securities) 1,000 117 200 200 1,000

Effective N 171.7 40.7 200.0 188.7

Figure 3.   Factor Portfolios and Pure Factors
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0.658, as predicted by the generalized Treynor–Black 
result in Equation 4.

To summarize, under the assumed investor 
views in Table 3, the maximum possible ex ante 
Sharpe ratio is 0.658, compared with a passive 0.400 
Sharpe ratio for the market portfolio. Given the fac-
tor exposures built into US stocks at the beginning 
of 2016, the cap-weighted top-quintile security 
portfolio (next-to-last column of Table 6) has an ex 
ante Sharpe ratio of 0.590, capturing (0.590 – 0.400)/
(0.658 – 0.400) = 74% of the potential improvement 
in the Sharpe ratio over the market portfolio. In con-
trast, a long-only portfolio built from cap-weighted 
top-quintile factor subportfolios (Panel C of Table 5) 
has an ex ante Sharpe ratio of 0.453, capturing only 
(0.453 – 0.400)/(0.658 – 0.400) = 21% of the poten-
tial improvement over the market portfolio. Our ex 
ante analysis for 2016 assumes that the long-only 
investor is aware of any secondary exposures of the 
factor subportfolios and takes them into account in 
maximizing the Sharpe ratio of portfolio F. Under 
more ad hoc methodologies for combining the factor 
subportfolios, the capture of potential Sharpe ratio 
improvement would be even lower.

Considerations for Idiosyncratic Risk. The 
theoretical and empirical results up to this point have 
ignored the impact of security-specific or idiosyn-
cratic risk, focusing solely on Sharpe ratios driven 
by factor exposures. The focus on expected return 
to factor exposures rather than the alphas of indi-
vidual securities is consistent with the philosophy 
of factor-based investing, but even well-diversified 
security portfolios retain some idiosyncratic risk. 
To understand the potential impact of idiosyncratic 
risk, consider the hypothetical example of an equally 
weighted portfolio of 100 securities, each with idio-
syncratic risk of 20%. Because idiosyncratic risks 
are by definition uncorrelated, the calculation of 
the portfolio’s idiosyncratic risk in this case is sim-
ply 0.20/(100)1/2 = 2.00%. Given a relatively low 
assumed factor risk of 15.00%, total portfolio risk 

would be (0.152 + 0.022)1/2 = 15.13%. Coupled with 
an expected return of 6.00%, the total risk Sharpe 
ratio is 6.00/15.13 = 0.397, compared with a factor 
risk Sharpe ratio of 6.00/15.00 = 0.400, verifying that 
idiosyncratic risk has little practical impact on well-
diversified portfolios.

The realized versus ex ante impact of idiosyn-
cratic risk is a complex combination of the general 
level of idiosyncratic risk, the heterogeneity or rela-
tive magnitudes of idiosyncratic risk across securi-
ties, and the correlations between those magnitudes 
and the various factor exposures. In addition, the 
ex post or realized performance of optimized port-
folios depends on the persistence (i.e., predictabil-
ity) of the idiosyncratic risks. For example, given 
homogeneous idiosyncratic risks, the number of 
securities in a long-only-constrained optimization 
will monotonically increase with the magnitudes 
of the idiosyncratic risks. Alternatively, the magni-
tudes of heterogeneous idiosyncratic risk estimates 
may be correlated with one of the nonmarket fac-
tors, increasing or decreasing the total risk optimal 
exposure to that factor.

Table 7 provides a brief examination of the 2016 
ex ante impact of considering idiosyncratic risks in 
the cap-weighted quintile subportfolio and total 
portfolio methodologies. The third row of Table 
7 reports the estimated idiosyncratic risk for each 
of the portfolios, under the assumption that idio-
syncratic risk is homogeneous at 20% for each of 
the 1,000 investable securities. The 20% estimate is 
based on the median observed five-factor idiosyn-
cratic risk from the prior 60 months of returns and 
the set of factor exposures in 2016. For instance, the 
small subportfolio’s idiosyncratic risk estimate is 
0.85% and the value subportfolio’s idiosyncratic risk 
estimate is 3.37%. At these levels, the impact of idio-
syncratic risk is generally immaterial to the analysis 
of factor-based investing. For example, idiosyncratic 
risk increases the small subportfolio’s total risk from 
16.30% to only 16.32% and the value subportfolio’s 
total risk from 17.83% to only 18.15%.

Table 7.   The Impact of Idiosyncratic Risks

Market Low Beta Small Value Momentum Portfolio F Portfolio S
Return 6.00% 5.51% 7.27% 7.54% 6.58% 6.81% 9.81%
Factor risk 15.00% 13.23% 16.30% 17.83% 16.50% 15.04% 15.52%
Homogeneous 

idiosyncratic risk 1.53% 2.87% 0.85% 3.37% 3.60% 1.27% 3.13%
Total risk 15.08% 13.54% 16.32% 18.15% 16.89% 15.09% 15.83%
Total Sharpe ratio 0.398 0.407 0.445 0.416 0.390 0.451 0.619

N (securities) 1,000 200 800 200 200 904 117
Effective N 171.7 48.7 547.4 35.1 30.8 248.9 40.7

Heterogeneous 
idiosyncratic risk 1.41% 1.93% 1.00% 2.43% 4.96% 1.08% 4.61%
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The lower idiosyncratic risk estimate for the 
small subportfolio in Table 7, compared with the 
other subportfolios, is largely driven by the fact that 
800 rather than 200 individual securities are included 
in that portfolio, but it is also a function of the dis-
tribution of the weights. Under the homogeneous 
idiosyncratic risk assumption, the impact on the 
portfolio’s idiosyncratic risk is scaled by the inverse 
square root of the portfolio’s effective N:

σ
σ

ε
ε

, .P
PN

=  (17)

For instance, Table 7 reports that the idiosyn-
cratic risk estimate for the market portfolio is 20.00/
(171.7)1/2 = 1.53% and the estimate for portfolio S is 
20.00/(40.7)1/2 = 3.13%, even though the market port-
folio has five times as many securities as portfolio S.

If idiosyncratic risk estimates are heterogeneous 
across securities, an important issue for factor-based 
investors is how the magnitude of such risks corre-
lates with the various factor exposures. As in most 
prior years, a regression of the log realized idiosyn-
cratic risk from the prior 60 months on the 2016 factor 
exposures shows statistically significant tendencies 
for stocks with greater exposures to the small and 
momentum factors to have higher idiosyncratic risk 
and for stocks with greater exposures to low beta and 
value to have lower idiosyncratic risk. For example, 
the estimate in Table 7 for the low-beta subportfolio 
drops from 2.87% for homogeneous idiosyncratic 
risk to 1.93% for heterogeneous idiosyncratic risk. 
But the estimate for the small subportfolio increases 
from 0.85% for homogeneous idiosyncratic risk to 

1.00% for heterogeneous idiosyncratic risk. Although 
the impacts are small, such patterns of heteroge-
neous idiosyncratic risk would tilt optimal weights 
slightly away from the small and momentum factors 
and slightly toward the low-beta and value factors.

Ex Ante and Ex Post Historical 
Performance, 1968–2015
The 1968–2015 (48-year) track record of security ver-
sus factor portfolio investing can be examined in two 
ways: (1) the evolution of the ex ante or expected 
factor Sharpe ratios at each point in time and (2) 
simulated ex post or realized return performance 
over the entire history. First, Figure 4 plots the 
expected factor Sharpe ratio for portfolios S and F 
at the beginning of each month from January 1968 to 
December 2015, using the top-quintile cap-weighted 
specification reported in Panel C of Table 5 and the 
fourth column of Table 6. Figure 4 illustrates the 
comparative advantage of constructing long-only 
portfolios directly from individual securities versus 
factor subportfolios. The ex ante factor Sharpe ratio 
for portfolio S plots much closer than portfolio F’s 
ratio to the unconstrained long–short or maximum 
possible factor Sharpe ratio of 0.658. On average, the 
additional factor Sharpe ratio capture of portfolio S 
over the market Sharpe ratio is about 80%, compared 
with about 40% for portfolio F.

Note that as an actual historical record of factor-
based investing, Figure 4 makes the implausible 
assumption that starting back in the 1960s, investors 
knew about the equity factors that are now widely 

Figure 4.   Ex Ante Sharpe Ratios, 1968–2015
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followed and had some perspective on the magni-
tude of their information ratios. We used constant 
information parameter values, as given in Table 3, so 
changes in the ex ante factor Sharpe ratios for S and 
F are due solely to changes in the factor exposures 
in the underlying securities over time. Although 
some of the changes may also be related to the cross-
sectional correspondence of factor exposures to the 
capitalization weights in the benchmark portfolio, 
the key drivers are changes in the cross-sectional 
correlations in the factor exposure matrix.

Table 2 shows that at the beginning of calendar 
year 2016, large-cap US stocks with high value expo-
sure tended to have low momentum exposure, as 
measured by the cross-sectional correlation value of 
–0.313. Similarly, stocks with low beta tended to be 
large rather than small, as measured by the correla-
tion value of –0.173. As discussed earlier, negative 
correlations between factor exposures make long-
only combinations of factor subportfolios less able 
to preserve factor premiums, because the constraint 
against shorting becomes more binding. Indeed, 
Figure 4 suggests that the gap in expected factor 
Sharpe ratios between portfolios S and F in the US 
equity market is currently (2016) as large as at any 
point in the 48-year history. As in Table 5, versions of 
Figure 4 for the maximum Sharpe ratio and equally 
weighted quintile portfolios over 1968–2015 also 
show higher factor Sharpe ratio capture for port-
folios F and S, with a significant and persistent gap 
between them.

Second, the long-term historical data from the 
CRSP and Compustat also allow for a backtest or 
simulation of the ex post performance of various 
portfolio construction methodologies, with the same 
caveat about what investors would have known back 
in the 1960s. Although a host of details in the simula-
tion can affect the results, we focused on constant 
factor return expectations over time. Table 8 reports 
the performance of portfolios F and S, rebalanced 
monthly using the three long-only construction 
methodologies in Tables 5 and 6. Specifically, the last 
two columns of Table 8 compare a version of portfo-
lio F that combines cap-weighted top-quintile factor 

subportfolios and a version of portfolio S constructed 
by cap weighting the top quintile of stocks that score 
high on all four nonmarket factors simultaneously.

As Table 8 shows, the market (i.e., the Russell 
1000 proxy) excess return over 1968–2015 was 5.73%, 
with a standard deviation of 15.56% and a realized 
Sharpe ratio of 0.368, compared with the expected 
0.400 market Sharpe ratio incorporated into the 
simulation. The cap-weighted quintile portfolio S 
(last column of Table 8) has an excess return of 9.51%, 
compared with portfolio F’s 7.61%, with slightly 
lower realized risk. Although the focus in Table 8 is 
on the cap-weighted quintile portfolios, the differ-
ence in realized Sharpe ratios between portfolios F 
and S is not quite as pronounced in the maximum 
Sharpe ratio and equal-weighted quintile portfolios. 
The two other subportfolio construction alternatives 
thus provide ex post support for equal-weighted 
methodologies, at least over 1968–2015, when the 
larger implicit exposure to the small factor paid off.

Returning to the cap-weighted quintile portfolios 
in Table 8, we see that the realized active risk (“track-
ing error”) is higher for portfolio S than for portfolio 
F, but the realized information ratio, which adjusts 
for active risk, is 0.669, much higher than the realized 
information ratio of 0.417 for portfolio F. Alternatively, 
a 5.66/6.98 = 81% weighted combination of portfolio 
S and the market portfolio would yield a 0.81 × 4.67 = 
3.78% alpha, compared with a 2.36% alpha for portfo-
lio F, on the basis of an equal realized tracking error. 
But as discussed earlier, measuring risk-adjusted 
performance in this way ignores the optimal level 
of active risk in portfolio construction. Specifically, 
a risk-averse investor could simply relever portfolio 
S to match the total risk of portfolio F, which would 
increase the realized excess return of portfolio S.

Sensitivity analysis of the simulations reported 
in Table 8 could adjust for a wide variety of specifica-
tions, including investor views on factor informa-
tion ratios, dynamically changing factor and market 
risks, and the estimation process for idiosyncratic 
risks. Indeed, backtest parameters are often adjusted 
in practice to control turnover and to balance the 
best Sharpe ratio against other characteristics, such 

Table 8.   Ex Post Performance, 1968–2015

Maximum Sharpe Ratio Equal-Weighted Quintile Cap-Weighted Quintile

Market F S F S F S
Average 5.73% 7.40% 9.80% 7.63% 10.26% 7.61% 9.51%
Std. dev. 15.56% 13.40% 15.02% 13.22% 15.27% 15.35% 14.89%
Sharpe ratio 0.368 0.552 0.652 0.577 0.672 0.496 0.639

Market beta 1.000 0.741 0.788 0.760 0.877 0.917 0.845
Market alpha 0.00% 3.15% 5.29% 3.28% 5.24% 2.36% 4.67%
Tracking error 0.00% 6.83% 8.69% 5.93% 6.85% 5.66% 6.98%
Information ratio 0.000 0.462 0.608 0.554 0.764 0.417 0.669
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as drawdown risk and benchmark tracking error. 
Because the focus of our study was on ex ante portfo-
lio construction and the relative performance of two 
general portfolio structures, we did not explore the 
broad set of specifications that could be backtested 
to produce the best historical results.

Conclusion
Does a long-only-constrained investor with views 
about equity market factor returns and risks but no 
views about individual security returns still need a 
portfolio constructed directly from individual stocks? 
In this article, we have shown that the answer is yes, 
both theoretically (ex ante) and empirically (ex post). 
The mathematics of mean–variance portfolio theory 
indicates that the long-only constraint applied to a 
large portfolio of securities only slightly reduces the 
potential efficiency from exploiting nonmarket fac-
tors. Even when the investor has no views on security 
alphas, a well-constructed security portfolio has the 
flexibility, or “degrees of freedom,” needed for a near-
optimal simultaneous exposure to the underlying fac-
tors. In contrast, the additional layer of constraints in 
combining factor-replicating subportfolios materi-
ally reduces mean–variance efficiency. Ironically, the 
reduction in ex ante Sharpe ratios increases with the 
number of nonmarket factors and the magnitude of 
their ex ante information ratios, and a belief in several 
nonmarket factors with positive active returns is prob-
ably the reason for deviating from the passive market 
portfolio in the first place.

The implications for the evolution of prepack-
aged portfolios, such as multifactor exchange-traded 
funds, depend on the assumed correlation structure 
of factor exposures across the securities. In the equity 
market, a large set of securities with differential 
exposures to various factors allows the investor to 
construct security portfolios that capture almost all 
the potential gains, so the loss from using prepack-
aged factor portfolios can be substantial. In other 
asset classes, where individual securities fall into cat-
egories with similar factor exposures, the loss from 
using prepackaged portfolios would be less material. 
For example, a fixed-income investor may face a set 
of securities in which exposure to one factor, such 
as duration, is generally associated with exposure to 
another factor, such as optionality or credit. If the set 
of investable securities has high cross-sectional cor-
relations with factor exposures, combining them into 
long-only subportfolios does not impose as much of 
a reduction in ex ante performance.

Multifactor products that have been introduced 
by various providers in the institutional investment 
management industry may avoid some of the subop-
timality associated with predefined factor portfolio 
construction. Specifically, a version of Equation 2 

can be used to establish security weights that opti-
mize across multiple factors simultaneously. The end 
investor, however, would need to be aware of the 
secondary as well as primary factor exposures in 
the product and the assumed structure of the idio-
syncratic risks. For instance, a product optimized to 
the small and value factors could not be combined 
with a product optimized to the momentum and 
recently popularized quality (Novy-Marx 2013) fac-
tors without facing the same suboptimality issues 
associated with combining single-factor products. 
In other words, the prepackaged portfolios would 
need to measure all the factors that the end investor 
views as relevant. In addition, the weighting of the 
underlying factors in a multifactor product would 
need to change over time with changes in the inves-
tor’s view on the magnitude of the various factor 
information ratios.

The use of factor subportfolios may still have 
advantages for some investors. Factor portfolios 
come prepackaged, and the process of subsequently 
constructing a multifactor portfolio from subportfo-
lios is generally less complex and easier to explain 
than constructing a multifactor portfolio directly from 
individual securities. The level of sophistication in 
portfolio theory needed to isolate factor returns and 
move them from one portfolio construct to another is 
typically associated with institutional investors that 
directly manage portfolios of securities, rather than 
individual investors. The performance of the separate 
factor subportfolios is easier to track and facilitates 
performance attribution in multifactor combinations. 
Separate factor subportfolios allow the end investor 
to easily select the factors thought to be most relevant 
and also allow for a simple reweighting of prepack-
aged subportfolios over time based on changes in 
the investor’s views on expected factors. In the end, 
the results of our study suggest that such simplicity 
comes at a high cost when the factor subportfolios are 
combined in a long-only setting.

Because the dominant factor in equity portfolios 
is market risk, equity index futures may provide an 
alternative way to reconfigure the factor exposures 
in predefined portfolio products. Although many 
investors have policy or other constraints that restrict 
shorting of individual securities or nonmarket sub-
portfolios, equity index futures that track the market 
portfolio are highly liquid and a short futures posi-
tion could be used to “squeeze out” enough market 
exposure that the nonmarket factors would have 
closer-to-optimal exposures. But if some security 
shorting is allowed (e.g., long–short 120/20 portfo-
lios), the results in Table 4 suggest that pure factor 
subportfolios allow for the conceptual simplicity of 
weights on factor subportfolio combinations being 
equal to the desired factor exposures. Thus, replacing 
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the long-only constraint with a long–short 120/20 
constraint could capture most of the remaining fac-
tor Sharpe ratio potential in multifactor security 
portfolios.

CE Qualified
Activity 1 CE credit

Appendix A. Multifactor 
Portfolio Theory
When an investor can use risk-free cash to lever or 
delever the final result, utility theory does not affect 
the construction of optimal risky asset portfolios. The 
objective is to find the unique portfolio along the 
efficient frontier that maximizes the Sharpe ratio. The 
well-known solution to the Sharpe ratio–maximizing 
portfolio is

wP
P

P
=










−σ
µ

2
 1 ,  (A1)

where wP  is an N-by-1 vector of optimal asset 
weights,   is the forecasted N-by-N asset return 
covariance matrix, and   is the N-by-1 vector of 
forecasted asset returns in excess of the risk-free rate. 
The intuition behind Equation A1 is that optimal 
asset weights increase with forecasted returns via 
the asset return vector and decrease with risk via the 
inverse covariance matrix. The scalar multiplier (in 
parentheses in Equation A1) is given in terms of the 
optimal portfolio’s risk and expected return, 
although the asset weights can be calculated without 
those values. The raw weights specified by  −1  can 
be divided by the scalar value ′ −  1  to ensure that 
the weights sum to 100%. 

Additional structure for the general mean–vari-
ance solution in Equation A1 requires a specification 
of the asset return–generating process. The well-
known linear factor model assumes that the realized 
excess return on each asset i is a linear function of K 
common risk factors:

r R Ri i i i K K i= + + + +α β β ε, ,... ,1 1  (A2)

where the Rj  are realized returns on factors j = 1 to 
K, the βi j,  are exposures of asset i to factor j, and εi  
is the idiosyncratic risk of asset i. We assume that αi  
is zero for all N assets (i.e., no security-specific alphas) 
in order to focus on factor returns. Under that assump-
tion, the vector of expected asset returns is simply

 = B U,  (A3)

where B  is the N-by-K matrix of asset factor expo-
sures and U  is a K-by-1 vector of forecasted factor 

returns. Given the linear factor model in Equation 
A2, the asset return covariance matrix is

 = B V B +′ ,  (A4)

where V  is a K-by-K factor return covariance matrix, 
and   is a diagonal matrix of idiosyncratic return 
variances. Without loss of generality, we assume that 
all but the first (i.e., market exposure) column vec-
tors in B  have been standardized to have a cross-
sectional mean of 0 and a standard deviation of 1 
(note that the first column of B  is filled with 1s). In 
other words, the variance of each nonmarket factor 
exposure has been subsumed by the factor return 
covariance matrix, V.

Inserting Equations A3 and A4 into Equation A1 
gives the optimal asset weight vector as

w BVB B UP
P

P
=








 ′ +( )−σ

SR
1

 .  (A5)

The matrix inverse in Equation A5 can be analyt-
ically derived and used for unconstrained long–short 
security portfolios, although numerical optimization 
is required when a long-only constraint is imposed.4 
In our study, we focused on factor Sharpe ratio maxi-
mization because the source of expected returns is 
factor exposures rather than security-specific alphas. 
Thus, eliminating the diagonal matrix   in Equation 
A5 gives asset weights that maximize the expected 
return from factor exposures divided by the risk 
from factor exposures.

Without  , the remaining N-by-N matrix BVB′  
in Equation A5 has rank K < N and is thus not directly 
invertible. However, an inverse can be derived by 
using the Penrose (1955) left-side and right-side 

inverse of a nonsquare matrix: B B B B− −′( ) ′1 1=  and 

′ ′( )− −B B B B1 1= ,  commonly called “Moore–Penrose 
pseudoinverses.” Applying these matrix identities 
to Equation A5 and given that the inverse of a matrix 
product is the product of the inverses in reverse 
order, we obtain the factor Sharpe ratio–maximizing 
portfolio

w B B B V UP
P

P
=








 ′( )− −σ

SR
1 1 ,  (A6)

where ′B B  is the K-by-K factor exposure covari-
ance matrix. Although exact, the analytic solution 
in Equation A6 is not unique, so a numerical search 
requires additional restrictions, such as the long-only 
constraint or the reintroduction of homogeneous idio-
syncratic risks. Although almost all large-scale opti-
mizations in practice require a numerical search, the 
analytic solution in Equation A6 provides an intuitive 
structure for factor-optimal weights and is a key step in 
establishing the Treynor–Black result (which follows).



(corrected May 2017)

November/December 2016 www.cfapubs.org  25

We use the subscript F to designate an optimal 
combination of K factor subportfolios, as opposed to 
an optimal combination of N securities. Relabeling 
Equation A6, we obtain the K-by-1 vector of Sharpe 
ratio–maximizing weights for portfolio F:

w B B B V UF
F

F
F F F=













′( )− −σ
µ

2
11 ,  (A7)

where BF  is a K-by-K matrix of the subportfolio 
factor exposures. In the absence of constraints, the 
portfolio of individual securities (Equation A6) and 
portfolio F (constructed from subportfolios accord-
ing to Equation A7) have the same squared factor 
Sharpe ratio of

SRP
2 1= ′ −R R ,  (A8)

where R  is a K-by-1 vector comprising the market 
Sharpe ratio and the other factor information ratios.5 
An important principle, first identified by Treynor 
and Black (1973), is that under the assumption of 
uncorrelated factor returns (i.e.,   = =−1 ), the 
optimal portfolio’s squared Sharpe ratio in Equation 
A8 is the squared market Sharpe ratio plus the sum 
of squared information ratios of the nonmarket 
factors:

SR SR IRP M j
j

K2 2 2

2
= + ∑

=
.  (A9)

Factor subportfolios can be constructed by using a 
variety of techniques, whereby some subportfolios are 
optimal by different criteria and other subportfolios are 
constructed in an ad hoc fashion. For example, Clarke, 
de Silva, and Thorley (2014) showed that the active 
(i.e., benchmark-relative) asset weights of “pure” factor 
subportfolios are given by the columns of

∆∆w B w B w B= ( ) ′[ ]− M M( ) ,1
 (A10)

where wM  is the vector of market (benchmark) 
weights and   is the matrix dot product. Equation 
A10 provides factor-replicating subportfolios that 
are pure in that the matrix product ∆∆ ′w B,  absent the 
first column and row, forms the K – 1 by K – 1 iden-
tity matrix. That is, the factor portfolios described 
in Equation A10 have an exposure of exactly 1 to 
the nonmarket factor of interest and an exposure of 
exactly 0 to the other factors.

The optimal amount of active risk in a Sharpe 
ratio–maximizing portfolio can be derived by defin-
ing the total return as the portfolio’s market exposure 
(e.g., market beta) times the expected market return 
plus the active return. The expected active return is 
in turn defined by the fixed information ratio (col-
lectively from one or more nonmarket factors) times 
a variable level of active risk:

µ β µ σP P M A= + IR .  (A11)

Similarly, a portfolio’s total risk squared in terms 
of market exposure, market risk, and uncorrelated 
active risk is

σ β σ σP P M A
2 2 2 2= + .  (A12)

Combining Equations A11 and A12 gives the 
squared portfolio Sharpe ratio as

SR
IR

P
P M A

P M A

2
2

2 2 2=
+( )
+

β µ σ

β σ σ
.  (A13)

Maximizing Equation A13—by setting the first 
derivative with respect to active risk equal to zero 
and using some algebra in which terms cancel out—
gives the optimal level of active risk as

σ β σA
M

P M=
IR

SR
.  (A14)

The optimal level of active risk in Equation A14 
increases with the portfolio’s ex ante information 
ratio. Intuitively, if the portfolio’s ex ante informa-
tion ratio is zero, the optimal level of active risk is 
zero and the passive market portfolio is optimal. 
Substituting the optimal level of active risk from 
Equation A14 back into Equation A13 (and using 
some algebra in which market exposure drops out) 
gives a simple version of the Treynor–Black result:

SR SR IRP M
2 2 2= + ,  (A15)

where, again, the portfolio’s ex ante information ratio  
may be derived from several factors.

For long-only or other constraints imposed 
on an optimized portfolio, Clarke, de Silva, and 
Thorley (2002) introduced the transfer coefficient 
(TC), which affects the constrained portfolio Sharpe 
ratio (the notation SR with no subscript) according 
to the formula 

SR SR TC IR2 2 2= + ×( )M .  (A16)

If TC = 1 (i.e., constraints are not binding), then 
Equation A16 reduces to Equation A15. Combining 
Equations A15 and A16 and solving for TC gives a 
transfer coefficient formula based on squared Sharpe 
ratios:

TC
SR SR
SR SR
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In the main text of this article, we use the slightly 
less complicated “percentage capture” of maximum 
potential Sharpe ratio, SR SR SR SR−( ) −( )M P M/ ,  
rather than the transfer coefficient in Equation A17, 
as the ex ante measure of a constrained portfolio’s 
mean–variance efficiency.
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Notes
1. For a review of information ratios, factor-based portfolios, and 

the Treynor–Black rule, see Bodie, Kane, and Marcus (2013), 
especially Chapters 8 and 10.

2. Specifically, the factor returns are estimated from a series of 
monthly cap-weighted cross-sectional regressions of security 
returns on standardized factor exposures.

3. As explained in Appendix A, Equation 2 provides exact closed-
form optimal security weights for an unconstrained portfolio but 
does not work well as the basis for long-only numerical optimiza-
tion because the solution is not unique absent idiosyncratic risk.

4. Based on the matrix inversion lemma, the general form of 
the inverse covariance matrix in Equation A5 is 

BVB B V +B B B′ +( ) − ′( ) ′− − − − − − −    
1 1 1 1 1 1 1= ,  which can be 

used to provide an analytic but fairly complex matrix algebra 
solution for optimal security weights.

5. The proof uses the matrix definitions of a portfolio’s expected 

return, µP P= ′w BU, and variance, σP P P
2 = ′ ′w BVB w , and the 

weights in Equation A6. With these substitutions, the terms 
involving B  cancel out, giving a squared Sharpe ratio of 
µ σP P

2 2/ = ′ −U V U1 . Equation A8 uses the additional matrix 
relationship V = ′( )  ,  where   is the matrix dot product, 
to isolate the factor correlation matrix   instead of the factor 
covariance matrix V .
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