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Market-cap index, factors, alpha—these well-known sources of 
return each have extensive histories in academic literature 
and in practice.1 The seminal role of the market in the first 

asset pricing model, the CAPM, has been a major topic in finance since 
Sharpe (1964) and Lintner (1975). Today’s smart beta industry directly 
targets style factors, such as value, momentum, quality, size, and mini-
mum volatility, and owes its beginning to the first formal factor model, 
by Ross (1976), and the many empirical studies since then. Perhaps 
the longest history is that of active management; active managers 
have attempted to beat benchmarks in commingled vehicles since the 
18th century (see Rouwenhorst 2005). While these distinct sources of 
return—index, factors, and alpha—are well documented, there is less 
academic research showing how to combine these distinct sources of 
return in an optimal portfolio.2

We present a new methodology for combining market-cap index 
(or simply “index”), factor, and alpha-seeking strategies. The intuition 
behind our framework is as follows. If an investor is tracking a market-
cap benchmark with no active risk, or tracking error, budget, then the 
portfolio must be 100% index. If the investor is allowed to deviate 
from the market, then she can hold factor and alpha funds, with higher 
active risk budgets resulting in lower allocations to index funds. The 
higher the conviction an investor has on alpha-seeking funds, the 
higher the prior mean and the tighter the prior standard deviation on 
the active funds’ information ratios (IRs) and the more the active risk 
budget will be allocated to alpha versus factor strategies. Thus, IRs can 
be set by investors’ beliefs on manager skill and the observed track 
records of funds. In one extreme case, an investor with no tracking 
error budget would allocate 100% of the portfolio to index funds. An 
investor with a tracking error target but no conviction in alpha would 
allocate only to index and factor strategies.

Factor strategies have rigorous economic rationales, there are long his-
tories available, and they can be implemented in low-cost and transpar-
ent vehicles. Therefore, an investor’s degree of confidence in factors 
is likely to be different from his conviction in alpha-seeking strategies, 
which are likely to have smaller samples for evaluation. Alpha should 
be delivering returns in excess of broad and persistently rewarded fac-
tor exposures; this return requires specialized skills to take advantage 
of market inefficiencies or dislocations. Ang, Goetzmann, and Schaefer 
(2011) concluded after summarizing a very large literature that these 
skills do exist but are scarce. Access to alpha may also be restricted by 
manager selection capabilities.

We establish, under both 
theoretical conditions and empiri-
cal application, the separate roles 
of (1) market asset class exposure 
through index funds; (2) style 
factor exposure, such as exposure 
to value, momentum, and quality, 
which have traditionally delivered 
higher and differentiated returns 
than market index exposure; and 
(3) pure alpha-seeking sources of 
return in excess of index and factor 
returns. A new methodology deter-
mines optimal allocations of index, 
factors, and alpha-seeking funds 
by imposing priors on the informa-
tion ratios of factors and alpha 
strategies. We expect in many 
cases, prior standard deviations for 
factor funds will be smaller than 
those for alpha strategies, whereas 
prior means for alpha strategies 
may be larger than those for 
factor funds.
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We model this intuition with a Bayesian framework 
where the investor sets priors on Sharpe ratios or 
information ratios. In typical applications, the factors 
would have prior distributions on reward-to-risk 
ratios that would be informed by relatively long data 
samples. The prior standard deviation on the Sharpe 
ratios of factor strategies would be relatively tight. 
In contrast, the prior distribution on the IRs of alpha-
seeking strategies would typically have more disper-
sion but may have a higher prior mean than that for 
factors. It is important that we model the IR of alpha 
funds in excess of the index and factor strategies. 
That is, in the procedure, we estimate exposures of 
the alpha funds to factors and the prior distribution 
is imposed on the idiosyncratic component of the 
alpha returns. Finally, we explicitly model manage-
ment costs because the costs of factor strategies 
are, on average, significantly lower than those of 
alpha funds.

We employ a recent advance in Bayesian compu-
tation methods, the no-U-turn sampler (NUTS) 
implementation of Hoffman and Gelman (2014).3 
Standard Bayesian techniques also allow us to infer 
missing data points, so we can extract information 
from the longer histories of factor strategies versus 
alpha funds, along with samples of unequal lengths 
of different fund managers. We set our priors directly 
on Sharpe ratios or IRs, which has the advantage 
that these are important statistics used in evaluating 
fund managers and in asset allocation. We derive the 
posterior parameters and the moments of the predic-
tive distribution.

The procedure has an important advantage in 
that it complements a traditional optimization-
based investment process, rather than replacing it. 
Quantitative-based investment approaches revolve 
around an optimization, which is typically based on a 
quadratic objective function. These nest the tradi-
tional Markowitz (1952) mean–variance approach 
and models with ambiguity around certain param-
eters, as shown by Garlappi, Uppal, and Wang (2007) 
and Maccheroni, Marinacci, and Rustichini (2006). 
Those optimizations can be used as usual, but we 
introduce a step before the optimization that pro-
duces the mean and covariance inputs in a way that 
trades off the priors, data lengths, and interaction 
terms between index, factors, and alpha.4 Recently, 
Pedersen, Babu, and Levine (2021) showed how tra-
ditional mean–variance approaches can be adapted 
to incorporate shrinkage methods for the covariance. 
Our approach is different in that we place priors on 
information ratios on index, factors, and alpha to 

come up with outputs of means, covariances, and 
possibly whole predictive distributions—which can 
be used in any optimization.

We applied our methodology to equities, but the 
same methodology can be used to allocate to other 
index/factors/alpha in other asset classes and across 
a multi-asset portfolio. We selected alpha-seeking 
funds from the Morningstar universe of active 
funds consisting of large-, mid-, and small-cap funds 
in value, growth, and blend styles and technology 
funds. We used standard long-only factor investment 
strategies tracking minimum-volatility, momentum, 
value, small size, and quality factors, all of which 
are easily accessible in low-cost and transparent 
exchange-traded funds (ETFs). These factor strate-
gies have longer sample lengths than the alpha funds 
have. We set different prior beliefs on factor and 
alpha IRs, which we compared with the resulting 
posterior and predictive means and variances. In a 
second stage, we fed these updated means and vari-
ances into a regular mean–variance utility maximiza-
tion to determine optimal index, factor, and alpha 
allocations.

Our approach is most related to that of Pástor 
and Stambaugh (1999, 2000); Baks, Metrick, and 
Wachter (2001); Tu and Zhou (2004); and Avramov 
(2004), who formulated asset allocation models in 
a Bayesian setting.5 This literature does not directly 
specify priors in terms of Sharpe ratios or informa-
tion ratios, although Pástor and Stambaugh’s prior 
is proportional to residual variance. Consistent with 
most asset pricing models that have implications for 
reward-to-risk ratios (with a large literature starting 
from Hansen and Jagannathan 1991), our theoreti-
cal framework sets the prior directly with Sharpe 
or information ratios. Empirically, our advance is to 
use much faster updating methods than the Markov 
chain Monte Carlo (MCMC) methods used in the 
literature. Practically, we take care to differentiate 
between returns, which are stochastic, and costs, 
which are known with certainty, and derive 
moments of the predictive distribution for optimal 
allocation.6

Theoretical Setting
In this section, we first summarize the different 
roles of index, factor, and alpha-seeking strategies. 
Investors should allocate to alpha only if those strat-
egies are generating returns in excess of index and 
factors. To get a flavor of formal modeling, we then 
take a special case of uncertainty on only one risky 

https://www.cfainstitute.org
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asset (alpha or factors) relative to the market-cap 
benchmark and show, in closed form, the effects 
of prior uncertainty, sample length, and the data 
likelihood. We leave full expositions and proofs to 
Appendix A.

Alpha Is Excess of Index and Factors.  
Consider three assets: index, factor, and pure alpha-
seeking strategies. (We also refer to the market 
index as a benchmark portfolio.) The alpha-seeking 
return, ri, loads on both the market and factor 
portfolios, and it has a mean return, αi, in excess of 
market index and factor exposures. Then, we have 
the following:

Proposition 1: If there is no alpha present 
(αi = 0), then the holdings of the active manager 
are equal to zero. With conviction on alpha, 
αi > 0, investors seeking to maximize Sharpe 
ratios of their portfolios reallocate capital 
from index and factor funds toward alpha-
seeking managers, with higher alpha beliefs 
resulting in higher capital allocations to active 
managers.

In Proposition 1, what is important is not the total 
return on the alpha-seeking fund: The active man-
ager must outperform relative to the exposures of 
index and factors. We can also characterize the maxi-
mum Sharpe ratio achievable by allocating to index, 
factors, and alpha, which depends on the individual 
assets’ squared reward-to-risk ratios.

Proposition 2: The marginal contribution to the 
portfolio’s Sharpe ratio of the alpha-seeking 
manager in addition to that of index and factor 
funds depends on the appraisal ratio (excess 
returns divided by volatility) of the active man-
ager’s return in excess of index and factors to the 
active manager’s idiosyncratic volatility.

Put another way, the active fund can have a positive 
return due to index or factors or due to both, but 
unless the alpha-seeking fund beats both the index 
and factor strategies, it is irrelevant for the investor. 
Given these results, we assume that there are active 
managers with positive alpha in excess of index 
and factors. The next section explores the intu-
ition behind a methodology to allocate to all three 
components.

Incorporating Uncertainty. For simplicity, 
we assume there are past returns of one risky asset 
series, {yt}, that are net of fees with Sharpe ratio 

(or information ratio) S = µ
σ

, where μ and σ are the 

asset’s mean and standard deviation of returns, 
respectively. The cost of transacting the strategy 
is c.7 We assume that the standard deviation, σ, 
is known and estimate the mean parameter, μ. 
Appendix B describes the full model with uncertainty 
on all parameters.

Priors and posteriors of the Sharpe ratio. We 
assume that the returns, y, are normally distributed, 
so the likelihood function is

p y S N S c( , ) ~ ( , ).| σ σ σ2 2−  	 (1)

We impose the following prior on the Sharpe ratio:

p S N S( ) ~ ( , ),|σ τ2
0

2 	 (2)

where S0 is the prior mean and τ2 is the prior vari-
ance. In typical applications, factors should have 
lower prior means than alpha-seeking strategies, and 
prior standard deviations for factors should be lower, 
on average, than those for alpha funds.

We can derive the posterior p S p S( , ) ( , )| | σ σ2 2∝  
p S( )|σ2 , which is given by

p S N S S( , ) ~ ( , ),| σ µ σ2 2 	 (3)

where the posterior mean, μS, and variance, σS
2, of 

the posterior distribution of S are
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where y  is the sample mean of y.

The intuition for Equation 3 is as follows. 
Under normality, the sample distribution of the 
standard mean estimator is a normal distribution, 

2
0 )ˆ  ~ ( , /y N Tµ = µ σ , where μ0 is the population 

mean and σ2/T  is the sample variance of µ̂. Thus, 
the distribution of the Sharpe ratio, S = µ σ, has a 
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variance of 1/T.8 The inverse of this expression is 
the first term in the posterior variance of σS

2. This 
term is combined with the inverse of the variance of 
the prior of S in Equation 3. A similar expression also 
occurs in a general Bayesian regression setup, where 
the variance is the inverse of the sum of the inverses 
of the sample estimator variance and the prior vari-
ance, except now, because we work in terms of the 
Sharpe ratio, the sample variance is 1/T.

In Equation 3, the posterior mean, μS, takes the form 
of a weighted average of the sample estimate, σy c+ ,  
and the prior mean, S0. That is, we can rewrite 
Equation 3 for μS as

µS y c S= + + −Weight × ( ) Weight  × ( ) ,1 0 	 (4)

or

µS = + −Weight × Data estimate Weight × Prior.( )1

The weighted average form of data estimates and 
prior in Equation 4 is standard in Bayesian estima-
tors. In this case, because we have specified the 
distribution of the returns, y, to be net of fees, the 
posterior mean of S is expressed as a gross-of-fee 
return, σy c+ . Note that as τ→∞, we have decreasing 
confidence in the prior and all the weight is placed 
on the data estimate. In the limit τ→∞, the posterior 
mean and variance of S converge to µ σS y c→ +  and 
σS T2 1→ , which are the sample mean estimator and 
variance, respectively, of the Sharpe ratio, S.

Utility problem with parameter uncertainty.  
To apply the framework with Sharpe ratio or infor-
mation ratio uncertainty to a portfolio allocation 
problem, we require the predictive distribution:

p y p y S p S dS
S

( | ) ( , ) ( | ) ,Y � Y Y=∫  | 	 (5)

where p y S( , )|  is the likelihood and p S( | )  is the 
posterior of S. The Bayesian predictive distribu-
tion accounts for uncertainty about the unknown 
parameters. In particular, the greater the parameter 
uncertainty, the higher the variance of the posterior, 
σS

2, and hence the higher the variance of the predictive 
distribution, σ*2, because the parameter uncertainty is 
an additional source of risk.9

For mean–variance utility—the most popular objec-
tive function in practice—we need just the mean 
and variance of the predictive distribution, p y( )| .10 

In our simple case, the predictive y follows a normal 
distribution,

y N~ ( , ),* *µ σ 2 	 (6)

where µ σ σµ* ( | )= − = −E S c cS�Y  and σ σ σ* ( ).2 2 21= + S

In Equation 6, the predictive mean depends directly 
on the posterior mean of the Sharpe ratio, μS. Thus, 
any assumption on the prior of the Sharpe ratio or 
an effect of updating through properties of the data 
likelihood will affect the attractiveness of the active 
strategy. The predictive variance depends on the 
data variance, σ2, but it also depends on parameter 
uncertainty through σS

2. For factor strategies where 
the prior dispersion on the Sharpe ratio is relatively 
low, this fact decreases the predictive variance and 
makes those strategies relatively more attractive.

Data
In this section, we first describe the market-cap 
index benchmark and the factor portfolios. Then, we 
describe the alpha-seeking funds. To illustrate the 
methodology, we work only with US equity factor 
and alpha-seeking funds.

Index and Factors. We took the market-cap 
index to be US large-capitalization equity as mea-
sured by the S&P 500 Index.

For factors, we used long-only factor indexes 
tracking minimum volatility (Ang, Hodrick, Xing, 
and Zhang 2006), return momentum (Jegadeesh 
and Titman 1993), value (Basu 1977), small size 
(Banz 1981), and quality (Sloan 1996), listed 
in Table 1.

Table 1. �Factors and Corresponding 
Indexes

Factor Index

Minimum 
volatility

MSCI USA Minimum Volatility (USD) 
Index

Momentum MSCI USA Momentum Index

Value MSCI USA Enhanced Value Index

Small size S&P SmallCap 600 Index

Quality MSCI USA Sector Neutral Quality 
Index

https://www.cfainstitute.org
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Our data sample for the factor index returns is 
from December 2010 to December 2020 at the 
monthly frequency. As in the model setup in the 
section “Theoretical Setting,” we modeled these 
factors as orthogonal to the market return. This is 
done by running a regression of the factor index 
returns on the US large-cap equity index over the 
full sample. The residuals are then used to represent 
the factors.

Alpha-Seeking Funds. We constructed a list of 
potential alpha-seeking funds by first taking funds 
from December 2010 to December 2020 at the 
monthly frequency from the Morningstar database 
for US listed equity mutual funds. We took funds in 
the US equity style box categories with capitaliza-
tions of large, mid, and small and styles of value, 
growth, and blend, as well as technology sector 
funds. We report summary statistics of the funds in 
Table 2. Most of the funds fall into US large growth 
and blend categories, which account for the majority 
of assets under management for active funds (see, 
for example, recent statistics in Madhavan, Sobczyk, 
and Ang 2020). We computed monthly frequency 
active returns as the gross fund return minus the 
stated primary benchmark index as specified by 
Morningstar. Fees, used in net return calculations, 
are as of 31 December 2020. Table 2 reports that 
the average monthly active return of these funds 
is positive, at 0.63% per month, with an average 
reward-to-risk ratio of 0.13. The reward-to-risk ratios 

range from –0.06 for mid-cap blend funds to 0.42 for 
technology managers.

Over the 120 months of active returns ending 
December 2020, there is a positive relation between 
average active returns and active risk: In a regression 
of active returns on active risk, we estimated a coef-
ficient of 0.34. While the positive sign is consistent 
with Grinold (1994), the R2 is only 0.14, indicating 
that there are many active managers that may gener-
ate high returns with low active risk.

We constructed excess returns of the alpha-seeking 
funds relative to commonly used systematic fac-
tors in the academic literature to facilitate forming 
our priors for the alpha-seeking funds. We took the 
Fama and French (1993) factors: the market fac-
tor (MKT), the one-month T-bill (RF), size (SMB), 
and value (HML). We also used Kenneth French’s 
construction of the Jegadeesh and Titman (1993) 
momentum factor (UMD). We augmented these 
factors with the quality minus junk factor (QMJ) 
constructed by Asness, Frazzini, and Pedersen (2019) 
and the betting-against-beta factor (BAB) of Frazzini 
and Pedersen (2014). While these factors have long 
histories and are backed by published academic 
studies, they are not investable. Hence, we used 
these to inform the priors on the factors, but when 
we allocated, we held the investable factor indexes 
listed in the section “Index and Factors.” We took 
advantage of the fact that we could use a longer time 

Table 2. Fund Universe, 31 December 2011 to 31 December 2021

Morningstar  
Category

Average 
Active Return

Average 
Active Risk

Average Return-
to-Risk Ratio

Average 
Fee

Number 
of Funds

Large blend –0.14% 2.99% –0.01 0.68% 116

Large growth 0.80 4.02 0.14 0.78 155

Large value –0.07 3.52 0.04 0.72 138

Mid-cap blend –0.20 4.97 –0.06 0.93 30

Mid-cap growth 1.75 4.97 0.31 0.91 76

Mid-cap value –0.02 3.76 0.02 0.80 42

Small blend 0.35 4.26 0.10 0.94 62

Small growth 1.88 5.00 0.35 0.98 86

Small value 0.54 4.20 0.15 0.96 48

Technology 3.34 7.85 0.42 0.95 16

All 0.63 4.11 0.13 0.82 769

Source: Morningstar.
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series—specifically, 25 years ending December 2020 
at the monthly frequency—to set the priors. The 
methodology, however, accommodates any well-
defined priors and any method of setting the priors. 
(See Appendix B for further details.)

Empirical Results
In this section, we first discuss the estimation of fac-
tor loadings of the active funds on the factors. Next, 
we describe the resulting posterior and predictive 
distributions. Then, we describe the results from 
using these distributions as inputs into a portfolio 
allocation problem.

Factor Loadings. Table 3 reports the results of 
regressing active fund returns on the factors over the 
10 years ending December 2020. These regressions 
used returns of the fund in excess of the large-cap 
equity benchmark on the left-hand side (LHS) and 
the orthogonalized factors on the right-hand side 
(RHS). In our benchmark results, we assumed that 
these factor loadings were held fixed in order to 
isolate the effects of the IR assumptions on the asset 
allocation.11

Because both the LHS and RHS are in excess returns, 
the coefficients in Table 3 are generally small in 
absolute value. The numbers in parentheses are 

Table 3. Factor Loadings of Active Funds, 31 December 2011 to 31 December 2021

Morningstar 
Category Intercept

US 
Equities Momentum Small Size Quality Value

Minimum 
Volatility

US fund large 
blend

0.00 0.00 0.002 0.022 –0.043 0.058 –0.032

(0.02) (0.10) (0.06) (0.71) (–0.16) (0.74) (–0.57)

US fund large 
growth

0.001 0.015 0.206** 0.032 –0.074 0.043 –0.165*

(0.08) (0.37) (2.03) (0.57) (–0.34) (0.42) (–1.85)

US fund large 
value

0.00 –0.002 0.019 0.004 0.047 0.073 –0.048

(0.16) (–0.21) (0.35) (–0.01) (0.50) (0.82) (–0.75)

US fund mid-
cap blend

–0.002 0.016 0.028 0.023 0.013 0.035 –0.15

(0.01) (–0.01) (0.16) (–0.37) (0.19) (0.26) (–1.45)

US fund mid-
cap growth

0.014 0.007 0.204* 0.017 –0.022 –0.043 –0.079

(0.91) (–0.25) (1.71) (0.22) (–0.04) (–0.44) (–0.90)

US fund mid-
cap value

0.005 0.008 –0.051 0.006 0.151 0.017 –0.184**

(0.54) (0.06) (–0.68) (0.18) (1.05) (0.08) (–2.21)

US fund small 
blend

0.003 0.012 –0.045 –0.138** –0.033 0.007 0.059

(0.29) (0.10) (–0.69) (–2.34) (–0.12) (0.02) (0.73)

US fund small 
growth

0.015 0 0.127 –0.104* –0.059 –0.102 –0.006

(0.85) (–0.05) (0.93) (–1.74) (–0.31) (–0.78) (0.02)

US fund small 
value

0.002 0.048 0.013 –0.118** 0.079 0.054 –0.059

(0.18) (1.32) (0.17) (–2.08) (0.46) (0.47) (–0.61)

US fund 
technology

0.026 0.044 0.308** 0.235** 0.135 –0.011 –0.383**

(1.07) (0.73) (2.17) (2.51) (0.24) (–0.19) (–2.41)

All 0.004 0.009 0.081 –0.012 –0.008 0.021 –0.078

(0.32) (0.13) (0.72) (–0.22) (0.05) (0.25) (–0.89)

*Significant at the 5% level.
**Significant at the 1% level. 
Notes: Numbers in parentheses are averages of the t-statistics across the fund-by-fund regressions. 
Source: Authors’ calculations using factor, index, and fund return data from Morningstar and Bloomberg.
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averages of the t-statistics across the fund-by-fund 
regressions. There are no significant factor loadings 
for large-cap blend funds at the 5% significance 
level, but US large growth and value funds do exhibit 
multiple significant factor exposures: to all factors 
except value for large growth funds and especially to 
the value factor for large value funds. Perhaps sur-
prisingly, small growth funds exhibit anti-momentum 
exposures for this set of funds; generally, growth 
funds load significantly on the momentum factor in a 
wider population (see, for example, Ang, Madhavan, 
and Sobczyk 2017). The small growth space is 
unusual in this respect; looking at the bottom row 
of Table 3 across all funds, our mutual fund universe 
tends to have positive exposures to momentum and 
value and also tends to hold larger and higher-quality 
stocks.

Table 4 reports data on the factors (see the section 
“Index and Factors”), over the last 25 years of data 
ending December 2020, that we used to set the 
priors on factors. The prior mean IRs were set as the 
full data averages. When we bootstrapped, we drew 
samples with replacement from the full sample, and 
we used the standard deviations of the bootstrapped 
samples as the standard deviations of the IRs. The 
highest IR is for minimum volatility, at 0.94, and the 
lowest is for size, at 0.17. The standard deviations are 
relatively tight, from 0.14 to 0.21.

Posterior and Predictive Results. After 
setting the priors, we ran the procedure with no-
U-turn sampling to generate posterior and predic-
tive information ratios, alphas, and the covariance 
matrix. We used automatic differentiation variational 

inference (ADVI) to initialize the sampler, setting the 
target acceptance ratio to 80%. We used 25 chains 
with 5,000 draws each to obtain 125,000 draws in 
total. For posterior predictive analysis, we generated 
50,000 simulated returns.12

To visualize the broad impact of the Bayesian 
procedure, we examine a scatterplot comparing the 
IR based on ordinary least-squares (OLS) data and 
the Bayesian IR (posterior mean) in Figure 1. Across 
all Morningstar categories, the Bayesian procedure 
attenuates the IR in data: As expected, high IRs 
in data may be due to noise, and the procedure 
shrinks these toward zero (see Equations 3 and 4). 
In Figure 1, we plot the linear fit, which has a slope 
of 0.23. This is significantly less than 1, which we can 
see in Figure 1, where we also plot a 45-degree line 
as a dashed diagonal line. This slope implies that the 
procedure shrinks extreme IRs toward zero.

Shrinkage and out-of-sample forecasts. The 
shrinkage does improve out-of-sample forecasts.13 
Table 5 reports the results when we split the data 
into two halves, from 2010 to 2015 and from 2016 
to 2020. For the first half, we performed our pro-
cedure producing a posterior mean of IRs for each 
fund. Next, we sorted the funds into three bins 
(high/middle/low) according to their posterior IRs. 
We examined the realized IRs of each fund in each 
bin over the second sample. If there is no predictive 
power, we should have 1/3 transition probabilities 
in each row. In Panel A of Table 5, the Bayesian 
procedure shows large entries, around or exceeding 
0.5, in the diagonals. For the top performers in the 
first row, which are arguably the most important for 
a fund allocator, over 91% of the funds in the top 
tercile end in the top or middle terciles in the out-of-
sample results. For comparison, we also computed 
the Markov transition matrix across the two samples 
using IRs predicted using OLS regressions. In this 
case, there is little predictive power, with the entries 
being close to a random sample of 1/3. Clearly, the 
Bayesian procedure helps in prediction.

Characterizing posterior distributions. Table 6 
reports the distribution of the posterior IRs and 
compares them with point estimates of IRs from 
OLS regressions (empirical IRs). We report the mean, 
standard deviation, and 3rd and 97th percentiles 
of the posterior IR distribution for the factors and 
several selected alpha-seeking funds. Because 
we imposed priors for index and factor funds, the 
resulting posterior IRs reported in Table 6 should be 
expected to differ from their empirical counterparts 

Table 4. �Empirical Information Ratios for 
Factor Indexes, 31 December 
2011 to 31 December 2021

Factor Mean IR
Standard 

Deviation of IR

US equity market 0.45 0.14

Minimum volatility 0.94 0.21

Momentum 0.59 0.14

Value 0.28 0.17

Size 0.17 0.14

Quality 0.55 0.14

Source: Authors’ calculations using factor, index, and fund 
return data from Morningstar and Bloomberg.
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because of shrinkage. For example, over the last 
10 years ending December 2020, value and size 
factors have underperformed, with IRs of –0.33 and 
–0.09, respectively, but the posterior means are posi-
tive, reflecting the prior assumption and that at the 
beginning of the 10-year period, value and size did 
exhibit outperformance. Likewise, the posterior IRs 

of the active funds are attenuated on average. For 
example, the JPMorgan Equity Income I fund has an 
empirical IR of 0.85 over the 10-year sample period. 
The posterior IR 3rd and 97th percentile bounds are 
positive, but the mean posterior IR is shrunk to 0.46. 
In general, we observe that the standard deviations 
of the posterior IRs are smaller than the standard 
deviations set in the prior owing to the contribution 
of the observable data and that prior standard devia-
tions deliberately err on the noninformative side.

Posteriors as a function of priors. In Figure 2, we 
illustrate how the posterior moments of three funds 
change as we change the prior mean on the IR. In 
each row, we change the prior mean of the IR, from 
zero (top row) to 0.35 (middle row) to 0.69 (bottom 
row). Each column corresponds to a different fund. 
The heavy black vertical line is the mean of the fund 
alphas in data, which is graphed at the same posi-
tion in all subplots for each fund in the columns. The 
dotted blue and the solid green densities correspond 
to the prior IR and the posterior IR, respectively. 
We hold the prior variance constant at 0.22 in this 
exercise to isolate the effect on the prior mean.

In the top row of Figure 2, the prior IR is zero and the 
posterior IR has a mean close to the empirical IR. For 
example, for institutional shares of the Edgewood 

Figure 1. Information 
Ratios in Data vs. 
Bayesian Procedure, 
31 December 2011 to 
31 December 2021

Bayesian

0.20

0.15

0.10

0.05

0

–0.2 0 0.2 0.4
Data

Large Blend Large Growth Large Value Mid-Cap Blend Mid-Cap Growth
Mid-Cap Value Small Blend Small Growth Small Value Technology

Note: The dashed line is the 45-degree line.
Source: Authors’ calculations using factor, index, and fund return data from Morningstar and 
Bloomberg. 

Table 5. �Out-of-Sample Fund Ranks, 
31 December 2011 to 
31 December 2021

 Top 1/3 Middle 1/3 Bottom 1/3

A. Transition matrix, Bayesian

Top 1/3 0.53 0.38 0.09

Middle 1/3 0.24 0.46 0.30

Bottom 1/3 0.24 0.15 0.61

B. Transition matrix, OLS

Top 1/3 0.30 0.39 0.31

Middle 1/3 0.34 0.28 0.38

Bottom 1/3 0.36 0.32 0.31

Source: Authors’ calculations using factor, index, and fund 
return data from Morningstar and Bloomberg.
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Growth Fund (ticker: EGFIX), the data IR is 0.26 and 
the posterior IR has a mean of 0.25 in the first row. In 
the second row, we set the prior IR to have a mean of 
0.35. In each case, as expected, the posterior mean 
increases with the prior mean, but both means are 
still fairly close to the data average. For example, 
for EGFIX in the second row with a prior IR of 0.35, 
the posterior IR is now 0.48, which is still close to 
the data IR of 0.26 but is higher than the posterior 
IR with mean 0.25 in the first row. The posterior 
distributions also narrow compared with the first 
row. In the last row, where the prior IR is highest, 
there is little effect of the data because the priors 
are much larger than the empirical distribution and 
the posterior IRs are close to the prior IRs. Thus, only 
for priors widely outside empirical experience do the 
data have little effect.

Predictive distributions. The predictive distribu-
tions also reflect the effect of informative priors on 
the IR mean, which we report in Table 7. The means 
of the style factors (momentum, quality, size, mini-
mum volatility, and value) are stated in excess of the 
S&P 500. The decade ended December 2020 saw 
negative performance of size and value in excess of 
the market, while the predictive means are positive 
at 1.4% and 0.3%, respectively, reflecting the effect 
of the priors. In contrast, minimum volatility had a 

strong positive return in the data, and the Bayesian 
procedure shrinks that mean down to 5.1%. The 
alphas of the funds are stated in excess of the S&P 
500 and the style factors. All fund alphas are gener-
ally attenuated by the priors of the IRs, but the effect 
can be small. There is little difference for the data 
and predictive standard deviations, which in many 
instances are the same to the third decimal place. For 
the effect of allowing uncertainty in the factor load-
ings, see the Online Supplemental Material.

Portfolio Construction. Taking the predictive 
moments in Table 7, we performed a mean–variance 
optimization exercise. We constructed portfolios to 
maximize portfolio active net-of-fee return subject 
to a long-only constraint and limited the number 
of holdings to 10 or fewer with a standard mean–
variance objective function. In our benchmark case, 
we took active risk relative to the large-cap bench-
mark of the S&P 500 Index, and we computed net-of-
fee returns assuming fees as of December 2020. We 
used a risk aversion coefficient of 32, which can be 
calibrated to target a particular level of active risk.

Figure 3 reports the equity portfolio holdings for 
the baseline case. The three largest holdings are the 
minimum-volatility factor (USMV), American Century 
Disciplined Core Value, and Fidelity Advisor Growth 

Table 6. �Posterior Distribution of Information Ratios (Annualized), 31 December 2011 
to 31 December 2021

 
Empirical 

IR
Mean of 

Posterior IR
Std. Dev. of 
Posterior IR

Posterior IR 
3rd Percentile

Posterior IR 
97th Percentile

S&P 500 1.069 0.551 0.097 0.367 0.727

Momentum 0.479 0.470 0.097 0.288 0.653

Quality 0.004 0.478 0.097 0.292 0.662

Size –0.091 0.156 0.097 –0.025 0.339

Minimum volatility 1.19 0.851 0.145 0.578 1.125

Value –0.328 0.055 0.121 –0.173 0.282

Pioneer Equity Income Y 0.316 0.339 0.152 0.055 0.627

JPMorgan Equity Income I 0.847 0.461 0.152 0.173 0.752

T. Rowe Price Instl. 
Mid-Cap Equity Gr.

0.557 0.395 0.152 0.111 0.682

BlackRock Technology 
Opportunities Instl.

0.573 0.398 0.152 0.114 0.689

PIMCO StocksPLUS Small 
Institutional

0.167 0.305 0.152 0.014 0.585

Source: Authors’ calculations using factor, index, and fund return data from Morningstar and Bloomberg.
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Opportunities, with weights of 22%, 12%, and 11%, 
respectively. Using the predictive moments from 
our procedure, we estimated this portfolio yields an 
excess return of 3.8% with an active risk of 2.0%, 
both of which represent an excess return–to–active 
risk ratio of 1.9 above the large-cap benchmark. In 
this exercise, there is only one factor—momentum—
with no direct allocation to the market factor. 
Minimum volatility is being used as a portfolio 
ballast: As active risk increases (not reported), the 
optimizer uses the higher risk budget to hold more 

aggressive positions in the alpha-seeking funds. 
These high-risk positions are effectively funded by 
larger positions in lower-risk minimum volatility.

Conclusion
We showed the separate roles played by index, 
factor, and active funds—and importantly showed 
how investors can incorporate prior information on 
the three sources of return that can be practically 
implemented in portfolio construction. Investors 

Figure 2. Fund Posterior Information Ratios under Different Priors, 31 December 2011 
to 31 December 2021
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allocate to active funds only if they have excess 
returns higher than both index and factors. Factors 
are likely to have longer data samples, and their 
premiums are based on economic rationales, whereas 
historical data for active funds may be shorter and 
their sources of returns may be more transitory. 
In addition, priors on information ratios may have 
higher means for true alpha-seeking funds, and while 
the mean prior IR for factors may be lower, the prior 
standard deviation on the factor IRs may be tighter 
than the prior standard deviation for active funds. 
Using the newly developed no-U-turn sampler, we 
constructed posterior IRs and used the predictive 

moments in a portfolio construction exercise allocat-
ing to index, factor, and active funds.

There are many possible extensions from our work. 
We can extend the application from long-only to 
long–short investing. We only incorporated beliefs 
and information on performance and specified priors 
on IRs. Investors may also have preferences for cer-
tain vehicles—such as ETFs versus traditional mutual 
funds—may take into account taxes, may lean toward 
more transparent strategies, or may prefer delegated 
or direct portfolio management. Index, factor, and 
alpha funds each have different advantages and 

Table 7. �Predictive Moments (Annualized Monthly Returns), 31 December 2011 
to 31 December 2021

 
Data (10-yr.) 

Mean
Predictive 

Mean
Data (10-yr.) 

Std. Dev.
Predictive 
Std. Dev.

S&P 500 0.145 0.076 0.136 0.139

Momentum 0.026 0.025 0.054 0.054

Quality 0.000 0.011 0.024 0.024

Size –0.008 0.014 0.090 0.090

Minimum volatility 0.070 0.051 0.059 0.060

Value –0.019 0.003 0.057 0.057

Pioneer Equity Income Y 0.006 0.013 0.031 0.031

JPMorgan Equity Income I 0.015 0.012 0.029 0.029

T. Rowe Price Instl. Mid-Cap Equity Gr. 0.007 0.007 0.030 0.030

BlackRock Technology Opportunities Instl. 0.050 0.036 0.071 0.073

PIMCO StocksPLUS Small Institutional 0.023 0.018 0.030 0.031

Source: Authors’ calculations using factor, index, and fund return data from Morningstar and Bloomberg.

Figure 3. Resulting 
Portfolio Allocation: 
Baseline Allocation, 
31 December 2011 to 
31 December 2021
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disadvantages along these dimensions beyond beliefs 
and historical data on IRs that can also be incorpo-
rated into the allocation problem.

Appendix A. Allocating to 
Index, Factor, and Alpha-
Seeking Strategies
In this appendix, we prove Propositions 1 and 2. We 
work with three assets: index (rm), factor (f), and pure 
alpha-seeking (ri) strategies, all of which are specified 
in excess of the risk-free rate.

Assume that the factor, f, is uncorrelated with the 
market, rm:

rm m m= +µ ε ,  	 (A1)

and

f f f= +µ ε ,  	 (A2)

with orthogonal zero mean shocks εm and εf with 
variances σm

2  and σf
2, respectively.14

The alpha-seeking fund, ri, loads on both the market 
and factor portfolios:15

r r fi i m i= + + +α ε ,  	 (A3)

which can also be written as

ri i m f m f i= + + + + +α µ µ ε ε ε ,

where the stock-specific shock, εi, has variance σi
2 

and is uncorrelated with shocks εm and εf  to the 
market and factor funds, respectively. This is consis-
tent with a Ross (1976) factor model with the stan-
dard assumption that the residuals are uncorrelated. 
Importantly, the alpha fund has a premium, α, in 
excess of the market premium, μm, and the long-term 
factor return, μf. We stack the excess returns of the 
three funds in the vector µ µ µ α= ( )'m f i . We can con-
sider Equation A3 to represent a fund with a market 
beta of 1, and the fund has unit factor exposure f, as 
well as unique alpha insights in excess of the factor 
returns, αi.

The covariance of ( )'r f rm i  from Equations A1–A3 is 
given by

Σ =

+ +






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
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f f

m f m f i
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0
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.  	 (A4)

With standard mean–variance mathematics, the 
optimal holdings, w w w wm f i= ( )', to maximize the 
portfolio’s Sharpe ratio are proportional to w ∝ −Σ 1µ, 
which is given by
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From Equation A5, we have Proposition 1.

The key result is that the active manager alpha, αi, 
must be in excess of market index and factor expo-
sures (μm and μf, respectively, in Equation A5). In 
this example, the weights are direct functions of 
appraisal ratios (excess returns divided by volatility) 
of index, factors, and alpha; the larger the risk-
adjusted performance of each component, the larger 
that component’s weight is in the portfolio.

The maximum squared Sharpe ratio that is obtainable 
is given by S = ′ −µ µΣ 1 , and the squared Sharpe ratio 
simplifies to

S m

m

f

f

i

i

2
2

2

2

2
2

2= + +
µ

σ
µ

σ
α

σ
.  	 (A6)

Stated in words, the maximum squared Sharpe ratio 
depends on the individual assets’ squared reward-
to-risk ratios. This result was originally derived by 
Treynor and Black (1973) for the market return and 
alpha measured relative to the single CAPM factor. 
This proof gives Proposition 2.

Appendix B. Full Model
Likelihood
We specify the jth factor return, j Nf= …1, , , to follow

f Nj f j f j f j f j= + ∼µ ε ε σ, , , ,, ( , ).0 2
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We stack the factor returns into an Nf ×1 vector 
f f fNf
≡ …[ , , ]'1  and write

f Nf f f N ff
= + ∼ ×µ ε ε, ( , )0 1 Σ . 	 (B1)

The factor covariance matrix, Σf, can be dense, but 
assume it is diagonal for simplicity. The roots of 
diagonal elements of Σf are volatilities of each factor 
strategy, which we denote as σf:

σ σ σf f f Nf
≡ = …diag( )Σf [ , , ] ., ,

'
1

Thus, the Sharpe ratios, Sf, are defined as the 
elementwise division (denoted by ./) of mean returns 
μf and standard deviations of factor returns σf:

Sf f f= µ σ./ .  	 (B2)

The ith alpha strategy returns, i Nr= …1, , , are mod-
eled as

r f Ni i i i i i= + + ∼α β ε ε σ, ( , ),0 2

where the factor loadings, βi, are a 1×Nf row vec-
tor. The alpha for strategy i is the scalar αi. Since f 
includes both index and factors, αi > 0 indicates the 
fund has a return in excess of the market and factors. 
The standard deviation of idiosyncratic return for 
this strategy is αi. We stack the scalar returns into an 
Nr ×1 vector of alpha strategy returns, r r rNr

= …[ , , ]'1 , 
and thus can write

r Bf N N rr
= + + ∼ ×α ε ε, ( , ),0 1 Σ  	 (B3)

where B Nr
= …[ , , ]'β β1  is the N Nr f×  matrix of factor 

loadings, α is the Nr ×1 vector of alphas, and Σr is 
the N Nr r×  covariance matrix. The factor covari-
ance matrix, Σr , is assumed to be dense, which can 
allow the factors to be correlated, though in our 
setting, the data-generating process for the alphas 
is assumed to produce alphas that on average are 
uncorrelated. As with the factor strategies, we define 
the Sharpe ratio or information ratio vector to be

Sr = α σ. / ,

where σ σ σ= …[ , , ]'1 Nr
 and ./ denotes element-by-

element division.

We place priors on Sharpe ratios or information 
ratios, so we rewrite the original linear system of 
observations in Equations B1 and B3 as
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in terms of Sf and Sr:
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where . denotes element-by-element multiplication 
and the error terms between f and r are uncorrelated:
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Note that because alpha-seeking funds load on the 
factors, there may be significant unconditional corre-
lations between shocks to factors and alpha-seeking 
returns.

In our formulation in Equation B4, the covariance 
matrices enter the mean. This echoes the formulation 
of the original CAPM, where the covariance (beta) 
affects a stock’s expected return. Whereas working 
with Sharpe ratios or information ratios is economi-
cally intuitive, the presence of variances in the mean 
prevents us from using standard Gibbs sampling 
techniques, as done by such authors as Pástor and 
Stambaugh (1999, 2000), Avramov (2004), and oth-
ers who did not link the mean and Sharpe ratios (or 
information ratios).16 Nevertheless, it is clear that 
given Sharpe ratios S = [Sf,Sr], covariance matrices 
[Σf,Σr], and factor loadings B, the likelihood function 
is completely pinned down.

Priors on Reward-to-Risk Ratios
We assume that the prior for each Sharpe ratio or 
information ratio, S = [Sf,Sr], is normal:

S N i N

S N j N
r i S r S r r

f j f r S f f
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We specify priors for the covariance matrices with 
the LKJ(η)–half-Cauchy(γ) distribution. We write the 
covariance matrix as
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Σ
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0
τ τ, 	 (B6)

where τ is a diagonal matrix of volatility scales of the 
diagonal elements of Σ, τ j jj= Σ , and Ω is a correla-
tion matrix, Ω Σi j i j i j, , /( )= τ τ .

The volatility priors follow a half-Cauchy distribution:

τi Cauchy ( ) with~ , .γ τi > 0 	 (B7)

As γ increases, the mean of the prior volatility 
increases. The main benefit of using the half-Cauchy 
distribution is that it performs well with small 
numbers close to zero and yet is quite fat tailed 
(see Gelman 2006; Polson and Scott 2012).

The LKJ distribution is specified on the correlation 
matrix:

Ω ~ ,LKJ( )η  	 (B8)

with the LKJ defined as

LKJ( )Σ Σ η| det( ) .η ∝ −1

Note that with η = 1, we have a uniform distribu-
tion. For η > 1, the prior favors correlations closer 
to zero (or the correlation matrix is close to unity), 
and for η < 1, the mass of the prior shifts toward 
correlations closer to ±1. Put another way, the LKJ 
distribution is uniform over the space of all positive 
definite correlation matrices and η controls how 
close the samples are to the identity matrix (see Joe 
2006; Lewandowski, Kurowicka, and Joe 2009). As 
is well known in portfolio optimization, extreme cor-
relations produce large swings in portfolio weights 
(see, for example, Best and Grauer 1991), and the 
LKJ prior is attractive because it enables us to draw 
positive definite correlation matrices with high prob-
ability and directly controls the amount of shrinkage 
in the covariance estimation.

The prior for factor loadings B is also chosen to 
be independently and identically distributed (i.i.d.) 
normal elementwise:

β µ σβ βi j i j i jN, , ,, .∼ ( )( ) ( )
2  	 (B9)

Generating the Posterior
Let θ = [S,B,Σ] denote all parameters and γ denote all 
observed data; then the posterior is given by

p p
p d

( ) ( ) ( )
( ) ( )

,θ
θ π θ
θ π θ θ

| |
|





=
∫

where π(θ) is the prior distribution of parameters 
specified above, or

p p( ) ( ) ( ).θ θ π θ| | ∝ 	 (B10)

We use Hoffman and Gelman’s (2014) no-U-turn 
sampler (NUTS) to generate parameter draws from 
this posterior. NUTS is an implementation of the 
Hamiltonian Monte Carlo (HMC) method (see Neal 
2011). Compared with the classical Metropolis–
Hastings random walk MCMC, NUTS-HMC draws 
parameters with larger successive distances. Thus, 
NUTS-HMC requires significantly fewer iterations 
to reach convergence. There is additional time saved 
in computing the posterior because NUTS usually 
accepts draws with more than 80% probability while 
MCMC typically has acceptance probabilities less 
than 20%. Lastly, NUTS and HMC are less likely to 
get stuck in local minimums of posterior densities.

The high efficiency of NUTS means we can deal with 
high-dimensional problems in terms of handling large 
numbers of funds and factors. This efficiency also 
allows us to incorporate missing data imputation 
into the sampling procedure using standard data 
augmentation techniques (see, for example, Tanner 
and Wong 1987; Kong, Liu, and Wong 1994). Under 
the hood, the missing data follow the same likelihood 
function as observed data, and thus each parameter 
draw is accompanied by a draw of missing data from 
the likelihood function conditional on those drawn 
parameters.

Predictive Moments
Let ypred be the predicted value for observed data; 
then the posterior predictive distribution is given 
by integrating out parameter uncertainty from the 
joint conditional distribution of predicted value and 
parameters:

p y p y d
p y p d

pred pred

pred
( | ) ( , | )

( ) ( | ) .
 


= ∫
= ∫

θ θ
θ θ θ| 	 (B11)

https://www.cfainstitute.org


� Index + Factors + Alpha

Volume 77 Number 4	�  59

The same principle for deriving Equation B11 with 
uncertainty on only one Sharpe ratio can be used to 
update the moments of the predictive distribution 
with uncertainty on all parameters using iterative 
expectations. Following Equation B11, the mean 
and variance of the predictive distribution are, 
respectively,

µ* ( ) [ ,= =E y E E y S| | | ]  ( )

and

σ* ( ) [ , , .2 = = +  var var( ) var ( )y E y S E y S| | | ] | |    

In more general cases, the predictive distribution is 
not normally distributed.

The posterior predictive for y ≡ [f,r] conditional on 
observed data proceeds per usual Bayesian proce-
dures. Computationally, it is minimally costly to simu-
late the observed variables (index, factor, and fund 
returns) given each parameter draw by the no-U-turn 
sampler.17 For mean–variance utility, we compute 
the predictive mean and variance from the sample 
counterparts from the generated predicted values. 
Since we can generate as many predicted values as 
we want, we can limit sampling error (versus the true 
posterior predictive mean and variance) to arbitrary 
degrees. We sample the net-of-fees posterior predic-
tive return distribution by simply subtracting the fees 
(cf, cr) from the posterior predictive distribution:

p
f c

r c
p

f
r

c

c
f

r

f

r

−

−
























=


















 −













| |  ,, 	 (B12)

where cf  represents fees on the factor funds and 
cr represents fees on the alpha-seeking funds, 
respectively.

Specifying Priors
The ability to set priors is both an advantage and a 
disadvantage of Bayesian methods; the methodology 
incorporates any well-defined prior. Our priors for 
our empirical results are set as follows.

For the factors (see the section “Index and Factors”), 
we bootstrapped the last 25 years of data ending 
December 2020. The prior mean IRs were set as the 
full data averages. In the bootstrap, we drew samples 
with replacement from the full sample, and we used 

the standard deviation of the bootstrapped samples 
as the standard deviations of the IRs.

For empirical Bayes priors for the active fund 
returns, we used the last 10 years of data ending 
December 2020. We regressed fund excess returns 
on the long–short academic factors listed in the 
section “Alpha-Seeking Funds.” From the OLS regres-
sions, we used the intercept and residual risk as our 
“empirical Bayes” prior means. We defined residual 
risk as the standard deviation of residuals from the 
OLS regressions. This procedure yielded a normal 
prior with 0.36 mean and 0.17 standard deviation 
(both annualized) as our prior baseline. For the 
volatilities, we set the half-Cauchy γ prior to 1.0 to 
match the median of the residual standard deviations 
from OLS.

When we allowed the idiosyncratic fund returns 
to be correlated, the η parameter for the LKJ prior 
was set to 3 to match the interquartile range of the 
OLS-based return residual correlations. We assume 
normal information ratio priors or, in the case of the 
market factor, Sharpe ratio priors based on a long-
run empirical examination of the factor’s perfor-
mances described above.

Appendix C. Convergence 
Diagnostics
For our main empirical results, we performed the fol-
lowing diagnostics to test for convergence in mean, 
variance, and autocorrelation of the sampling.

Geweke (1992) test: This test examines whether 
early sections in the chain have the same mean 
as the later sections by computing the following 
z-score-like statistics:

E x x

V x V x
early last

early last

( )

( ) ( )
,

−

+

where xearly is a section in the earliest 10% of the 
chain and xlast is a section in the last 50% of the 
chain. We partitioned the first 10% and the last 
50% into 20 segments and computed 20 Geweke 
test scores to see whether these segments oscil-
late between –1 and 1, which indicates good 
convergence.

R-hat test: The classic Gelman and Rubin (1992) 
R-hat test compares multiple independent chains. 
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The idea is that when all chains have converged, the 
within-chain variance and between-chain variance 
should be identical. The diagnostic is computed as

ˆˆ ,VR
W

=

where W is the within-chain variance and V̂ is the 
posterior variance estimate for the pooled (from 
multiple chains) chain. This score should be close to 
unity if all chains have converged. A recent improved 
version of the test was proposed by Vehtari, Gelman, 
Simpson, Carpenter, and Burkner (2019). The rule of 
thumb is that [0.95, 1.05] would be the range indica-
tive of convergence.

Effective samples: This diagnostic from Gelman, 
Carlin, Stern, Dunson, Vehtari, and Rubin (2013) 
estimates the number of effective parameters after 
accounting for autocorrelation induced by the sam-
pling method. It is computed as

1 

,
1 2

ˆ
ˆ

eff P
pp

nmn
=

=
+ ρ∑

where m is the number of chains, n is the number of 
samples per chain, pρ  is the estimated autocorrela-
tion at lag p, and P is the first odd positive integer 
such that the sum of ˆPρ  and 1ˆP+ρ  is negative.

Longer and more chains: In this diagnostic, we 
simply extended both the length and number of the 
simulated chains to examine whether our results of 
interest significantly changed.

Results
For total sample sizes of half a million, we found that 
most variables have more than 90,000 effective 
samples. All R-hat statistics are extremely close to 1. 
For IRs and Sharpe ratios, the Geweke statistics sit 
comfortably within the [–1, 1] range, which is indicative 
of convergence. To further enhance our confidence, we 
increased the total number of sequences to 2 million 
with 25 chains and 80,000 samples each. These results 
barely differed from the samples of half a million.

Appendix D. Simulation Exercise
To demonstrate the appropriateness of the estimation 
technique, we ran the following simulation exercise:

1.	 Simulate data from the general version of the 
model.

2.	 Estimate the model with true factor loadings and 
covariances known.

3.	 Vary the sample size to examine the finite-
sample properties: How many observations 
are needed to accurately recover the true 
parameters?

4.	 Vary prior means for Sharpe ratios: How much 
does specifying “wrong” priors matter for recov-
ering the true Sharpe ratios?

5.	 Vary prior means for Sharpe ratios: How sensi-
tive is the posterior predictive distribution of 
alpha to a “wrong” prior?

We ran all simulations using 10 Markov chains with 
5,000 samples each, and we treated the first 500 
samples as burn-in (not considered in inferences but 
merely used for mitigating the effects of initial start 
values).

Data-Generating Process
We generated factors f and fund return ri according 
to the following model:

f Nt f f t f t f= + ∼µ  , ,, ( , );0 Σ

r f Ni t i i t i t i t i, , ,, ( , ).= + + ∼α β σ  0 2

The priors of information ratios are given by

S Nf
f

f
S Sf f

≡ ∼ ( )µ

σ
µ σ, 2

and

S Ni
i

i
S Si i

≡ ∼ ( )α
σ

µ σ, .2

We assume the factors as a group are orthogonal to 
the fund returns. We assume the joint distribution of 
returns conditioning on loading matrix B is

I
B I

f
r
t

t

f f t

i t
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−

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
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where
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Simulation Settings
Let the dimension of funds be four and the dimen-
sion of factors be three. The true information/Sharpe 
ratios are as follows:

The true Σ (only the upper triangle is shown) is given 
in the following table:

The factor loadings are as follows:

We set the prior for all Sharpe/information ratios to 
be N(0.4, 102).

For robustness checks, see the Supplemental Online 
Material.

Editor’s Note
Submitted 18 September 2020 

Accepted 23 July 2021 by William N. Goetzmann

Disclaimer: The figures shown in this article relate to past 
performance. Past performance is not a reliable indicator 
of current or future results and should not be the sole fac-
tor of consideration when selecting a product or strategy. 
Index performance returns do not reflect any management 
fees, transaction costs, or expenses. Indexes are unman-
aged, and one cannot invest directly in an index. Indexes 
with a factor focus are less diversified than their parent 
index because they have predominant exposure to a single 
factor rather than the multiple factor exposure of most 
indexes. Therefore, they will be more exposed to factor-
related market movements.

Notes
1.	 See Ang (2014) for a summary of the large empirical litera-

ture on the CAPM, factors, and performance measurement 
of alpha-seeking strategies.

2.	 There are only a few studies optimizing index, factors, and 
alpha-seeking strategies in a formal framework. Homescu 
(2015) applied a regime-switching framework; Carson, 
Shores, and Nefouse (2017) used all three sources of 
return in target-date funds; and Bellord, Livnat, Porter, and 
Tarlie (2019) developed an expected shortfall methodology 
with a tracking error limit. Similar to our study, Aliaga-
Diaz, Renzi-Ricci, Daga, and Ahluwalia (2020) treated 
index, factors, and active strategies as distinct sources of 

returns and proposed that the investor has three differ-
ent risk aversion coefficients with respect to each of the 
three; they acknowledged the difficulty of calibrating 
risk aversion coefficients. We used only one risk aversion 
coefficient, as is commonly used in practice. They also did 
not consider parameter uncertainty. Corum, Malenko, and 
Malenko (2020) also considered allocations between index 
and active funds in a governance setting. None of these 
papers considered formulating expected returns based on 
incorporating priors on Sharpe ratios or information ratios 
or using prior information in building optimal portfolios of 
index, factors, and alpha.

 Factor 1 Factor 2 Factor 3

Fund 1 0.1048 0.1046 0.0864

Fund 2 –0.0120 0.0125 –0.0322

Fund 3 0.0842 0.2391 0.0076

Fund 4 –0.0566 0.0036 –0.2075

Factor 1 0.7357

Factor 2 –0.0954

Factor 3 1.2163

Fund 1 0.3436

Fund 2 0.1397

Fund 3 0.9436

Fund 4 0.9298

 Factor 1 Factor 2 Factor 3 Fund 1 Fund 2 Fund 3 Fund 4

Factor 1 0.1322 0.7815 –0.3712     

Factor 2  8.5905 0.8693     

Factor 3   2.4907     

Fund 1    0.4938 0.2801 0.8145 0.2870

Fund 2     0.1885 0.5078 0.3399

Fund 3      2.1158 0.9988

Fund 4       1.7645
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3.	 This is an implementation of Hamiltonian Monte Carlo, as 
developed by Duane, Kennedy, Pendleton, and Roweth 
(1987) and Neal (1994, 2011). These algorithms are much 
faster methods of constructing the posterior distribu-
tion of parameters than traditional Markov chain Monte 
Carlo (MCMC) methods, such as Metropolis, Rosenbluth, 
Rosenbluth, and Teller (1953) or Gibbs sampling (Geman 
and Geman 1984).

4.	 Our procedure also generates the whole predictive 
distribution, which could be used directly in general 
convex optimization problems (see, for example, Boyd 
and Vandenberghe 2004) or potentially in nonconvex 
utility functions, such as disappointment aversion or loss 
aversion (see, for example, Ang, Bekaert, and Liu 2005; 
Routledge and Zin 2010).

5.	 An earlier literature on using Bayesian techniques to 
examine the effects of uncertainty on asset pricing and 
asset allocation begins with Barry (1974); Brown (1979); 
and Bawa, Brown, and Klein (1979).

6.	 Black and Litterman (1991) also derived posterior means 
and variances while imposing prior beliefs around equilib-
rium views from the CAPM. However, they did not con-
sider the predictive distribution. Note that the predictive 
distribution depends on the posterior mean and variance, 
as well as sampling error. Black and Litterman used only 
posterior means and variances, without accounting for 
sampling error.

7.	 We net fees from the expected returns provided to the 
optimization because fees are paid with certainty, but risks 
and returns are subject to uncertainty. The cost, c, can also 
be interpreted as a holding cost and, more generally, as a 
utility certainty equivalent cost for information or access 
to the underlying investment strategy.

8.	 The convergence rate of 1/ T  leads to substantial impacts 
on uncertainty, as noted by Fama and French (2018) and 
others. This is another reason why the use of a prior is so 
important for practical application.

9.	 Note that the popular Black and Litterman (1991) proce-
dure stops after deriving the posterior distribution and 
does not compute the predictive distribution.

10.	With a general utility function, U, we would find the 
portfolio weight, w, to maximize the utility function under 
the predictive distribution:

max ( , ) ( | ) ,
yw
U w y p y dy∫ 

	 where U w y( , ) is our objective function, which is a 
function of the portfolio weights, w, and the asset 
returns, y. Equation 6 can be derived by noting that 
y y S c S c= − −[ ]+ −( ) ( )σ σ , with y S c N− −( ) ~ ( , )σ σ0 2  and 
S N S S~ ( , )µ σ2 , which is derived in Equation 3.

11.	We found few differences when we allowed parameter 
uncertainty in the factor loadings compared with the base-
line results, which we show in the Online Supplemental 
Material. One of the reasons is that second moments tend 
to be estimated more reliably than means (see Merton 
1980; Chopra and Ziemba 1993).

12.	If the Bayesian procedure is too computationally expen-
sive for a large selection of funds, as an alternative, one 
can use ADVI with 10,000 steps to perform variational 
inference on the model because ADVI’s computation time 
is faster than Monte Carlo methods, such as NUTS. Note 
that variational inference methods, such as ADVI, provide 
only an approximation to the posterior distribution. One 
can then compute the portfolio optimization procedure 
to select a short list of funds that are on the efficient 
frontier. Using this short list, researchers can perform 
the full no-U-turn sampler to confirm the approximated 
results from ADVI.

13.	There are several procedures that could be used to obtain 
more accurate forecasts, such as employing rolling and 
expanding samples. We deliberately keep the analysis 
simple in this article.

14.	The factor dynamics in Equation A2 relative to the index 
portfolio are less restrictive than they seem. Following 
Asness (2004), a long-only equity factor fund containing 
overweight positions in value stocks and short positions in 
growth stocks relative to a market-cap benchmark can be 
expressed as r V G r V r r Gm m m m+ − = + − + −( ) ( ) ( ), and if the 
value, V, and growth, G, legs are appropriately constructed, 
they can remove a significant part of market exposure. 
Grinold and Kahn (2000) referred to the long–short port-
folio as a “characteristic portfolio.”

15.	These results will be the same if Equation A3 is changed to 
allow for factor loadings, r r fi i m i i= + + +α β γ ε . In particular, 
Treynor and Black (1973) and Roll (1977) showed how the 
optimal weights in a tangency portfolio will adjust to take 
into account the factor loadings, but the maximum achiev-
able Sharpe ratios by holding index, factor, and alpha funds 
will be unchanged.

16.	The popular normal-inverse Wishart distribution on 
Sharpe ratios and covariance matrices does yield a 
posterior distribution of Sharpe ratios that belongs to the 
exponential family, but there is no known way to sample 
from it. Metropolis–Gibbs sampling schemes may also take 
a long time to converge. The convergence of the no-U-turn 
sampler is very fast, as described in the “Generating the 
Posterior” section, and NUTS also handles incomplete data 
and data of funds with different sample lengths.

17.	 We can sample any deterministic function of observed 
variables easily for each parameter draw, including value at 
risk, optimal asset allocation statistics, and other stress-
testing statistics.
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